Model problems for two nonlinear equations that type depends on the solution
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 539-547.

Voir la notice de l'article provenant de la source Math-Net.Ru

Model problems for two nonlinear second-order partial differential equations that type depends on the solution are considered in this article. One of the equations can be called a nonlinear analog of the Lavrent'ev–Bitsadze equation.
Keywords: type of equation, elliptic and hyperbolic equations, Lavrentev–Bitsadze's equation, Tricomi problem.
@article{JSFU_2013_6_4_a14,
     author = {Isaac I. Vainshtein},
     title = {Model problems for two nonlinear equations that type depends on the solution},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {539--547},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a14/}
}
TY  - JOUR
AU  - Isaac I. Vainshtein
TI  - Model problems for two nonlinear equations that type depends on the solution
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 539
EP  - 547
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a14/
LA  - en
ID  - JSFU_2013_6_4_a14
ER  - 
%0 Journal Article
%A Isaac I. Vainshtein
%T Model problems for two nonlinear equations that type depends on the solution
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 539-547
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a14/
%G en
%F JSFU_2013_6_4_a14
Isaac I. Vainshtein. Model problems for two nonlinear equations that type depends on the solution. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 539-547. http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a14/

[1] I. I. Vainshtein, “The model problems for nonlinear analog Lavrentev-Bitsadze's equations”, Inverse and ill-posed problems of mathematical physics, International conference on the 80th anniversary of Academician Mikhail Lavrentiev, Abstracts, Novosibirsk, 2012 (in Russian)

[2] A. V. Bitsadze, The equations of mixed type, Akademia Nauk SSSR, Moscow, 1959 (in Russian) | Zbl

[3] I. I. Vainshtein, “Solution of two dual problems of splicing the vortex and potential flows by Goldshtik's variational method”, Journal of Siberian Federal University. Mathematics and Physics, 4:3 (2011), 320–331 (in Russian)

[4] M. A. Goldshtik, Vortex flows, Nauka, Novosibirsk, 1961 (in Russian)