Model problems for two nonlinear equations that type depends on the solution
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 539-547
Cet article a éte moissonné depuis la source Math-Net.Ru
Model problems for two nonlinear second-order partial differential equations that type depends on the solution are considered in this article. One of the equations can be called a nonlinear analog of the Lavrent'ev–Bitsadze equation.
Keywords:
type of equation, elliptic and hyperbolic equations, Lavrentev–Bitsadze's equation, Tricomi problem.
@article{JSFU_2013_6_4_a14,
author = {Isaac I. Vainshtein},
title = {Model problems for two nonlinear equations that type depends on the solution},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {539--547},
year = {2013},
volume = {6},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a14/}
}
TY - JOUR AU - Isaac I. Vainshtein TI - Model problems for two nonlinear equations that type depends on the solution JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 539 EP - 547 VL - 6 IS - 4 UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a14/ LA - en ID - JSFU_2013_6_4_a14 ER -
Isaac I. Vainshtein. Model problems for two nonlinear equations that type depends on the solution. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 539-547. http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a14/
[1] I. I. Vainshtein, “The model problems for nonlinear analog Lavrentev-Bitsadze's equations”, Inverse and ill-posed problems of mathematical physics, International conference on the 80th anniversary of Academician Mikhail Lavrentiev, Abstracts, Novosibirsk, 2012 (in Russian)
[2] A. V. Bitsadze, The equations of mixed type, Akademia Nauk SSSR, Moscow, 1959 (in Russian) | Zbl
[3] I. I. Vainshtein, “Solution of two dual problems of splicing the vortex and potential flows by Goldshtik's variational method”, Journal of Siberian Federal University. Mathematics and Physics, 4:3 (2011), 320–331 (in Russian)
[4] M. A. Goldshtik, Vortex flows, Nauka, Novosibirsk, 1961 (in Russian)