Equationally noetherian algebras and chain conditions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 521-526.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we describe the relation between the properties of being equational noetherian and ascending chain condition on ideals of an arbitrary algebra. We also give a formulation of Hilbert's basis theorem for varieties of algebras and obtain a criterion to investigate it for a given variety.
Keywords: algebraic set, radical ideal, coordinate algebra, Zariski topology, noetherain algebra, equationally noetherian algebra, pre-variety, variety, free product, Hilbert's basis theorem.
Mots-clés : algebraic structures, equations, $\max$-$n$ group
@article{JSFU_2013_6_4_a12,
     author = {Mohammad Shahryari},
     title = {Equationally noetherian algebras and chain conditions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {521--526},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a12/}
}
TY  - JOUR
AU  - Mohammad Shahryari
TI  - Equationally noetherian algebras and chain conditions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 521
EP  - 526
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a12/
LA  - en
ID  - JSFU_2013_6_4_a12
ER  - 
%0 Journal Article
%A Mohammad Shahryari
%T Equationally noetherian algebras and chain conditions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 521-526
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a12/
%G en
%F JSFU_2013_6_4_a12
Mohammad Shahryari. Equationally noetherian algebras and chain conditions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 521-526. http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a12/

[1] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I. Algebraic sets and ideal theory”, J. of Algebra, 219 (1999), 16–79 | DOI | MR | Zbl

[2] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Discriminating completions of hyperbolic groups”, J. Group Theory, 3:4 (2000), 467–479 | DOI | MR | Zbl

[3] G. Baumslag, A. Myasnikov, V. Romankov, “Two theorems about equationally noetherian groups”, Journal of Algebra, 194 (1997), 654–664 | DOI | MR | Zbl

[4] S. Burris, H. P. Sankappanavar, A course in universal algebra, Springer-Verlag, 1981 | MR | Zbl

[5] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Algebra and Discrete Mathamatics, 1 (2008), 80–112 | DOI | MR

[6] E. Daniyarova, A. Myasnikov, V. Remeslennikov, Algebraic geometry over algebraic structures, II: Fundations, Preprint, arXiv: 1002.3562v2[math.AG]

[7] E. Daniyarova, A. Myasnikov, V. Remeslennikov, Algebraic geometry over algebraic structures, III: Equationally noetherian property and compactness, Preprint, arXiv: 1002.4243v2[math.AG] | MR

[8] E. Daniyarova, A. Myasnikov, R. V. Remeslennikov, Algebraic geometry over algebraic structures, IV: Equatinal domains and co-domains, Preprint, 2012

[9] E. Daniyarova, V. Remeslennikov, “Bounded algebraic geometry over free Lie algebras”, Algebra and Logic, 44:3 (2005), 148–167 | DOI | MR | Zbl

[10] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math., 150, Springer, 1994 | MR

[11] Yu. Fedoseeva, Algebraic sets over abelian groups, Ph. D. Thesis, Omsk, Russia, 1998 (in Russian)

[12] V. A. Gorbunov, Algebraic theory of quasi-varieties, Perseus Books, 1998

[13] O. Kharlampovich, A. Myasnikov, “Tarski's problem about the elementary theory of free groups has a psitive solution”, E.R.A. of AMS, 4 (1998), 101–108 | MR | Zbl

[14] O. Kharlampovich, A. Myasnikov, “Irreducible affine varieties over a free group, I: irreducibility of quadratic equations and Nullstellensatz”, J. of Algebra, 200:2 (1998), 472–516 | DOI | MR | Zbl

[15] P. Morar, A. Shevlyakov, “Algebraic geometry over additive positive monoids: Systems of coefficient free equations”, Combinatorial and Geometric group Theory, Dortmund and Carleton Conferences, 2010

[16] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups, II. Logical Fundations”, J. of Algebra, 234 (2000), 225–276 | DOI | MR | Zbl

[17] A. I. Malcev, Algebraic structures, Nauka, Moscow, 1987 (in Russian)

[18] Z. Sela, Diophantine geometry over groups: I–X, Preprints, 2012

[19] A. Shevlyakov, “Algebraic geometry over additive monoid of natural numbers: the classification of coordiante monoids”, Groups, Complexity and Cryptology, 2:1 (2010), 91–111 | MR | Zbl