Equationally noetherian algebras and chain conditions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 521-526 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we describe the relation between the properties of being equational noetherian and ascending chain condition on ideals of an arbitrary algebra. We also give a formulation of Hilbert's basis theorem for varieties of algebras and obtain a criterion to investigate it for a given variety.
Keywords: algebraic set, radical ideal, coordinate algebra, Zariski topology, noetherain algebra, equationally noetherian algebra, pre-variety, variety, free product, Hilbert's basis theorem.
Mots-clés : algebraic structures, equations, $\max$-$n$ group
@article{JSFU_2013_6_4_a12,
     author = {Mohammad Shahryari},
     title = {Equationally noetherian algebras and chain conditions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {521--526},
     year = {2013},
     volume = {6},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a12/}
}
TY  - JOUR
AU  - Mohammad Shahryari
TI  - Equationally noetherian algebras and chain conditions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 521
EP  - 526
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a12/
LA  - en
ID  - JSFU_2013_6_4_a12
ER  - 
%0 Journal Article
%A Mohammad Shahryari
%T Equationally noetherian algebras and chain conditions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 521-526
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a12/
%G en
%F JSFU_2013_6_4_a12
Mohammad Shahryari. Equationally noetherian algebras and chain conditions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 521-526. http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a12/

[1] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I. Algebraic sets and ideal theory”, J. of Algebra, 219 (1999), 16–79 | DOI | MR | Zbl

[2] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Discriminating completions of hyperbolic groups”, J. Group Theory, 3:4 (2000), 467–479 | DOI | MR | Zbl

[3] G. Baumslag, A. Myasnikov, V. Romankov, “Two theorems about equationally noetherian groups”, Journal of Algebra, 194 (1997), 654–664 | DOI | MR | Zbl

[4] S. Burris, H. P. Sankappanavar, A course in universal algebra, Springer-Verlag, 1981 | MR | Zbl

[5] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Algebra and Discrete Mathamatics, 1 (2008), 80–112 | DOI | MR

[6] E. Daniyarova, A. Myasnikov, V. Remeslennikov, Algebraic geometry over algebraic structures, II: Fundations, Preprint, arXiv: 1002.3562v2[math.AG]

[7] E. Daniyarova, A. Myasnikov, V. Remeslennikov, Algebraic geometry over algebraic structures, III: Equationally noetherian property and compactness, Preprint, arXiv: 1002.4243v2[math.AG] | MR

[8] E. Daniyarova, A. Myasnikov, R. V. Remeslennikov, Algebraic geometry over algebraic structures, IV: Equatinal domains and co-domains, Preprint, 2012

[9] E. Daniyarova, V. Remeslennikov, “Bounded algebraic geometry over free Lie algebras”, Algebra and Logic, 44:3 (2005), 148–167 | DOI | MR | Zbl

[10] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math., 150, Springer, 1994 | MR

[11] Yu. Fedoseeva, Algebraic sets over abelian groups, Ph. D. Thesis, Omsk, Russia, 1998 (in Russian)

[12] V. A. Gorbunov, Algebraic theory of quasi-varieties, Perseus Books, 1998

[13] O. Kharlampovich, A. Myasnikov, “Tarski's problem about the elementary theory of free groups has a psitive solution”, E.R.A. of AMS, 4 (1998), 101–108 | MR | Zbl

[14] O. Kharlampovich, A. Myasnikov, “Irreducible affine varieties over a free group, I: irreducibility of quadratic equations and Nullstellensatz”, J. of Algebra, 200:2 (1998), 472–516 | DOI | MR | Zbl

[15] P. Morar, A. Shevlyakov, “Algebraic geometry over additive positive monoids: Systems of coefficient free equations”, Combinatorial and Geometric group Theory, Dortmund and Carleton Conferences, 2010

[16] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups, II. Logical Fundations”, J. of Algebra, 234 (2000), 225–276 | DOI | MR | Zbl

[17] A. I. Malcev, Algebraic structures, Nauka, Moscow, 1987 (in Russian)

[18] Z. Sela, Diophantine geometry over groups: I–X, Preprints, 2012

[19] A. Shevlyakov, “Algebraic geometry over additive monoid of natural numbers: the classification of coordiante monoids”, Groups, Complexity and Cryptology, 2:1 (2010), 91–111 | MR | Zbl