The Solution of Adjoint Heat Problem in Spherical Area by Laplace Transform Method
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 336-341
Voir la notice de l'article provenant de la source Math-Net.Ru
The spherically symmetric adjoint initial-boundary value problem of heat propagation in closed bounded spherical regions has been researched. The exact analytical solution of the direct and inverse nonstationary problem has been obtained using Laplace transform method. The stationary state has been found and it is shown that the nonstationary solution converges to stationary one when time tends to infinity, if such are the heat sources in media.
Keywords:
initial-boundary value problem, Laplace transform method, inverse problem.
Mots-clés : interface
Mots-clés : interface
@article{JSFU_2013_6_3_a6,
author = {Ilona A. Reznikova},
title = {The {Solution} of {Adjoint} {Heat} {Problem} in {Spherical} {Area} by {Laplace} {Transform} {Method}},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {336--341},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a6/}
}
TY - JOUR AU - Ilona A. Reznikova TI - The Solution of Adjoint Heat Problem in Spherical Area by Laplace Transform Method JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 336 EP - 341 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a6/ LA - en ID - JSFU_2013_6_3_a6 ER -
%0 Journal Article %A Ilona A. Reznikova %T The Solution of Adjoint Heat Problem in Spherical Area by Laplace Transform Method %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 336-341 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a6/ %G en %F JSFU_2013_6_3_a6
Ilona A. Reznikova. The Solution of Adjoint Heat Problem in Spherical Area by Laplace Transform Method. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 336-341. http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a6/