The Solution of Adjoint Heat Problem in Spherical Area by Laplace Transform Method
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 336-341.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spherically symmetric adjoint initial-boundary value problem of heat propagation in closed bounded spherical regions has been researched. The exact analytical solution of the direct and inverse nonstationary problem has been obtained using Laplace transform method. The stationary state has been found and it is shown that the nonstationary solution converges to stationary one when time tends to infinity, if such are the heat sources in media.
Keywords: initial-boundary value problem, Laplace transform method, inverse problem.
Mots-clés : interface
@article{JSFU_2013_6_3_a6,
     author = {Ilona A. Reznikova},
     title = {The {Solution} of {Adjoint} {Heat} {Problem} in {Spherical} {Area} by {Laplace} {Transform} {Method}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {336--341},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a6/}
}
TY  - JOUR
AU  - Ilona A. Reznikova
TI  - The Solution of Adjoint Heat Problem in Spherical Area by Laplace Transform Method
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 336
EP  - 341
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a6/
LA  - en
ID  - JSFU_2013_6_3_a6
ER  - 
%0 Journal Article
%A Ilona A. Reznikova
%T The Solution of Adjoint Heat Problem in Spherical Area by Laplace Transform Method
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 336-341
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a6/
%G en
%F JSFU_2013_6_3_a6
Ilona A. Reznikova. The Solution of Adjoint Heat Problem in Spherical Area by Laplace Transform Method. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 336-341. http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a6/

[1] A. N. Tihonov, A. A. Samarsky, Equations of mathematical physics, Nauka, M., 1972 (in Russian) | MR

[2] M. A. Lavrent'ev, B. V. Shabat, The function of complex variable theory methods, Nauka, M., 1987 (in Russian) | MR

[3] E. Kamke, The ordinary differential equations reference-book, Nauka, M., 2003 (in Russian)