On Error Estimates for Weighted Quadrature Formulas Exact for Haar Polynomials
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 298-307

Voir la notice de l'article provenant de la source Math-Net.Ru

On the spaces $S_p$, estimates are found for the norm of the error functional of weighted quadrature formulas. For quadrature formulas exact for constants a lower estimate of ${\left\|{\delta_{N}} \right\|}_{S_{p}^{\ast}}$ is proved, and for quadrature formulas possessing the Haar $d$-property upper estimates of the ${\left\|{\delta_{N}} \right\|}_{S_{p}^{\ast}}$ are obtained.
Keywords: Haar $d$-property, error functional of a quadrature formula, function spaces $S_p$.
@article{JSFU_2013_6_3_a2,
     author = {Kirill A. Kirillov},
     title = {On {Error} {Estimates} for {Weighted} {Quadrature} {Formulas} {Exact} for {Haar} {Polynomials}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {298--307},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a2/}
}
TY  - JOUR
AU  - Kirill A. Kirillov
TI  - On Error Estimates for Weighted Quadrature Formulas Exact for Haar Polynomials
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 298
EP  - 307
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a2/
LA  - en
ID  - JSFU_2013_6_3_a2
ER  - 
%0 Journal Article
%A Kirill A. Kirillov
%T On Error Estimates for Weighted Quadrature Formulas Exact for Haar Polynomials
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 298-307
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a2/
%G en
%F JSFU_2013_6_3_a2
Kirill A. Kirillov. On Error Estimates for Weighted Quadrature Formulas Exact for Haar Polynomials. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 298-307. http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a2/