On the Extension of Analytic Sets into a Neighborhood of the Edge of~a~Wedge in Nongeneral Position
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 376-380.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K = D_+\cup T^n\cup D_-$ be an $n$-circled two-sided wedge in $\mathbb C^n$ where the unit polycircle (torus) $T^n$ plays a role of the edge, and domains $D_{\pm}$ adjoined to $T^n$ may not contain any full-dimensional cone near $T^n$. In this case we say that the wedge $K$ is in nongeneral position. Consider a question when the closures of pure $n$-dimensional analytic sets $A_{\pm}\subset D_{\pm}\times\mathbb C^m$ compose a single analytic set in a neighborhood of the wedge $K\times\mathbb C^m$. If $K$ is in general position then the answer to the question is given by the theorem of S. I. Pinchuk. In the present article we expand this theorem to the case when the two-circled wedge $K$ is in nongeneral position, and $m = 1$.
Keywords: the edge of the wedge theorem, analytic sets, currents.
@article{JSFU_2013_6_3_a11,
     author = {Evgenieva V. Yurieva},
     title = {On the {Extension} of {Analytic} {Sets} into a {Neighborhood} of the {Edge} {of~a~Wedge} in {Nongeneral} {Position}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {376--380},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a11/}
}
TY  - JOUR
AU  - Evgenieva V. Yurieva
TI  - On the Extension of Analytic Sets into a Neighborhood of the Edge of~a~Wedge in Nongeneral Position
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 376
EP  - 380
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a11/
LA  - en
ID  - JSFU_2013_6_3_a11
ER  - 
%0 Journal Article
%A Evgenieva V. Yurieva
%T On the Extension of Analytic Sets into a Neighborhood of the Edge of~a~Wedge in Nongeneral Position
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 376-380
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a11/
%G en
%F JSFU_2013_6_3_a11
Evgenieva V. Yurieva. On the Extension of Analytic Sets into a Neighborhood of the Edge of~a~Wedge in Nongeneral Position. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 376-380. http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a11/

[1] V. S. Vladimirov, Methods of the Theory of Functions of Complex Variables, Nauka, M., 1964 (in Russian) | MR

[2] N. N. Bogolubov, B. V. Medvedev, M. K. Polivanov, Problems of the Theory of Dispersion Relations, Fizmatgiz, M., 1958 (in Russian)

[3] S. I. Pinchuk, “Bogolubov's theorem on the “edge of the wedge” for generic manifolds”, Mat. Sb., 94(136):3(7) (1974), 468–482 (in Russian) | MR | Zbl

[4] E. V. Yurieva, “On the holomorphic extention into a neighborhood of the edge of a wedge in nongeneral position”, Siberian Math. J., 52:3 (2011), 563–568 | DOI | MR | Zbl

[5] E. M. Chirka, Complex Analytic Sets, Nauka, M,, 1985 (in Russian) | MR

[6] B. Shiffman, “On the continuation of analytic sets”, Math. Ann., 185 (1970), 1–12 | DOI | MR | Zbl

[7] K. Funahashi, “On the extension of analytic sets”, Proc. Japan Acad. Ser. A, 54 (1978), 24–26 | DOI | MR | Zbl

[8] S. I. Pinchuk, “The edge of the wedge theorem for analytic sets”, Dokl. Akad. Nauk SSSR, 285 (1985), 563–566 (in Russian) | MR | Zbl