Explicit Variational Formulas for Third-order Equations on Riemann Surfaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 365-375
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we deduce explicit variational formulas for the solution of an ordinary differential equation of third order and its monodromy group with respect to a variation in the space of cubic holomorphic differentials on a compact Riemann surface.
Keywords:
holomorphic cubic differentials, compact Riemann surface, differential equation of third order
Mots-clés : variational formulas, monodromy group.
Mots-clés : variational formulas, monodromy group.
@article{JSFU_2013_6_3_a10,
author = {Marina I. Tulina},
title = {Explicit {Variational} {Formulas} for {Third-order} {Equations} on {Riemann} {Surfaces}},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {365--375},
year = {2013},
volume = {6},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a10/}
}
TY - JOUR AU - Marina I. Tulina TI - Explicit Variational Formulas for Third-order Equations on Riemann Surfaces JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 365 EP - 375 VL - 6 IS - 3 UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a10/ LA - en ID - JSFU_2013_6_3_a10 ER -
Marina I. Tulina. Explicit Variational Formulas for Third-order Equations on Riemann Surfaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 365-375. http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a10/
[1] D. A. Hejhal, “Monodromy groups for higher-order differentials equation”, Bull. Amer. Math. Soc., 81:3 (1975), 590–592 | DOI | MR | Zbl
[2] D. A. Hejhal, “The variational theory of linearly polymorphic functions”, J. d'Analyse Math., 30 (1976), 215–264 | DOI | MR | Zbl
[3] V. V. Chueshev, “An explicit variational formula for the monodromy group on a compact Riemann surface”, Sib. Adv. Math., 15:2 (2005), 1–32 | MR | Zbl
[4] R. C. Gunning, Lectures on vector bundles over Riemann surfaces, Princeton Univ. Press, Princeton, 1967 | MR | Zbl