Explicit Variational Formulas for Third-order Equations on Riemann Surfaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 365-375 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we deduce explicit variational formulas for the solution of an ordinary differential equation of third order and its monodromy group with respect to a variation in the space of cubic holomorphic differentials on a compact Riemann surface.
Keywords: holomorphic cubic differentials, compact Riemann surface, differential equation of third order
Mots-clés : variational formulas, monodromy group.
@article{JSFU_2013_6_3_a10,
     author = {Marina I. Tulina},
     title = {Explicit {Variational} {Formulas} for {Third-order} {Equations} on {Riemann} {Surfaces}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {365--375},
     year = {2013},
     volume = {6},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a10/}
}
TY  - JOUR
AU  - Marina I. Tulina
TI  - Explicit Variational Formulas for Third-order Equations on Riemann Surfaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 365
EP  - 375
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a10/
LA  - en
ID  - JSFU_2013_6_3_a10
ER  - 
%0 Journal Article
%A Marina I. Tulina
%T Explicit Variational Formulas for Third-order Equations on Riemann Surfaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 365-375
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a10/
%G en
%F JSFU_2013_6_3_a10
Marina I. Tulina. Explicit Variational Formulas for Third-order Equations on Riemann Surfaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 365-375. http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a10/

[1] D. A. Hejhal, “Monodromy groups for higher-order differentials equation”, Bull. Amer. Math. Soc., 81:3 (1975), 590–592 | DOI | MR | Zbl

[2] D. A. Hejhal, “The variational theory of linearly polymorphic functions”, J. d'Analyse Math., 30 (1976), 215–264 | DOI | MR | Zbl

[3] V. V. Chueshev, “An explicit variational formula for the monodromy group on a compact Riemann surface”, Sib. Adv. Math., 15:2 (2005), 1–32 | MR | Zbl

[4] R. C. Gunning, Lectures on vector bundles over Riemann surfaces, Princeton Univ. Press, Princeton, 1967 | MR | Zbl