Explicit Variational Formulas for Third-order Equations on Riemann Surfaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 365-375.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we deduce explicit variational formulas for the solution of an ordinary differential equation of third order and its monodromy group with respect to a variation in the space of cubic holomorphic differentials on a compact Riemann surface.
Keywords: holomorphic cubic differentials, compact Riemann surface, differential equation of third order
Mots-clés : variational formulas, monodromy group.
@article{JSFU_2013_6_3_a10,
     author = {Marina I. Tulina},
     title = {Explicit {Variational} {Formulas} for {Third-order} {Equations} on {Riemann} {Surfaces}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {365--375},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a10/}
}
TY  - JOUR
AU  - Marina I. Tulina
TI  - Explicit Variational Formulas for Third-order Equations on Riemann Surfaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 365
EP  - 375
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a10/
LA  - en
ID  - JSFU_2013_6_3_a10
ER  - 
%0 Journal Article
%A Marina I. Tulina
%T Explicit Variational Formulas for Third-order Equations on Riemann Surfaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 365-375
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a10/
%G en
%F JSFU_2013_6_3_a10
Marina I. Tulina. Explicit Variational Formulas for Third-order Equations on Riemann Surfaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 365-375. http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a10/

[1] D. A. Hejhal, “Monodromy groups for higher-order differentials equation”, Bull. Amer. Math. Soc., 81:3 (1975), 590–592 | DOI | MR | Zbl

[2] D. A. Hejhal, “The variational theory of linearly polymorphic functions”, J. d'Analyse Math., 30 (1976), 215–264 | DOI | MR | Zbl

[3] V. V. Chueshev, “An explicit variational formula for the monodromy group on a compact Riemann surface”, Sib. Adv. Math., 15:2 (2005), 1–32 | MR | Zbl

[4] R. C. Gunning, Lectures on vector bundles over Riemann surfaces, Princeton Univ. Press, Princeton, 1967 | MR | Zbl