Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2013_6_2_a4, author = {Yury V. Eliyashev}, title = {The {Hodge} filtration on complements of complex subspace arrangements and integral representations of holomorphic functions}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {174--185}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a4/} }
TY - JOUR AU - Yury V. Eliyashev TI - The Hodge filtration on complements of complex subspace arrangements and integral representations of holomorphic functions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 174 EP - 185 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a4/ LA - en ID - JSFU_2013_6_2_a4 ER -
%0 Journal Article %A Yury V. Eliyashev %T The Hodge filtration on complements of complex subspace arrangements and integral representations of holomorphic functions %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 174-185 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a4/ %G en %F JSFU_2013_6_2_a4
Yury V. Eliyashev. The Hodge filtration on complements of complex subspace arrangements and integral representations of holomorphic functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 174-185. http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a4/
[1] L. A. Aizenberg, A. P. Yuzhakov, Integral representations and residues in multidimensional complex analysis, Amer. Math. Soc., Providence, RI, 1983 | MR | Zbl
[2] R. Bott, L. W. Tu, Differential Forms in Algebraic Topology, Springer-Verlag, Berlin, 1982 | MR | Zbl
[3] V. M. Buchstaber, T. E. Panov, “Torus Actions and Combinatorics of Polytopes”, Proc. Steklov Inst. Math., 225, 1999, 87–120 | MR | Zbl
[4] V. M. Buchstaber, T. E. Panov, Torus Actions and Their Applications in Topology and Combinatorics, University Lecture Series, 24, American Mathematical Society, Providence, RI, 2002 | MR | Zbl
[5] D. A. Cox, “The homogeneous coordinate ring of toric variety”, J. Algebralc Geometry, 4 (1995), 17–50 | MR | Zbl
[6] D. A. Cox, “Recent developments in toric geometry”, Algebraic geometry – Santa Cruz 1995, v. 2, AMS, Providence, RI, 1997, 389–436 | DOI | MR
[7] A. M. Gleason, “The Cauchy-Weil theorem”, J. Math. Mech., 12 (1963), 429–444 | MR | Zbl
[8] M. Goresky, R. MacPherson, Stratified Morse Theory, Springer-Verlag, Berlin, 1988 | MR | Zbl
[9] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley, 1994 | MR
[10] A. Shchuplev, A. K. Tsikh, A. Yger, “Residual kernels with singularities on coordinate planes”, Proceedings of the Steklov Institute of Mathematics, 253, 2006, 256–274 | DOI | MR
[11] V. A. Vassiliev, “Topology of plane arrangements and their complements”, Russian Math. Surveys, 56:2 (2001), 365–401 | DOI | MR | Zbl