The Hodge filtration on complements of complex subspace arrangements and integral representations of holomorphic functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 174-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

We compute the Hodge filtration on cohomology groups of complements of complex subspace arrangements. By means of this result we construct integral representations of holomorphic functions such that kernels of these representations have singularities on subspace arrangements.
Keywords: Hodge filtration, integral representations, toric topology.
Mots-clés : plane arrangements
@article{JSFU_2013_6_2_a4,
     author = {Yury V. Eliyashev},
     title = {The {Hodge} filtration on complements of complex subspace arrangements and integral representations of holomorphic functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {174--185},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a4/}
}
TY  - JOUR
AU  - Yury V. Eliyashev
TI  - The Hodge filtration on complements of complex subspace arrangements and integral representations of holomorphic functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 174
EP  - 185
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a4/
LA  - en
ID  - JSFU_2013_6_2_a4
ER  - 
%0 Journal Article
%A Yury V. Eliyashev
%T The Hodge filtration on complements of complex subspace arrangements and integral representations of holomorphic functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 174-185
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a4/
%G en
%F JSFU_2013_6_2_a4
Yury V. Eliyashev. The Hodge filtration on complements of complex subspace arrangements and integral representations of holomorphic functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 174-185. http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a4/

[1] L. A. Aizenberg, A. P. Yuzhakov, Integral representations and residues in multidimensional complex analysis, Amer. Math. Soc., Providence, RI, 1983 | MR | Zbl

[2] R. Bott, L. W. Tu, Differential Forms in Algebraic Topology, Springer-Verlag, Berlin, 1982 | MR | Zbl

[3] V. M. Buchstaber, T. E. Panov, “Torus Actions and Combinatorics of Polytopes”, Proc. Steklov Inst. Math., 225, 1999, 87–120 | MR | Zbl

[4] V. M. Buchstaber, T. E. Panov, Torus Actions and Their Applications in Topology and Combinatorics, University Lecture Series, 24, American Mathematical Society, Providence, RI, 2002 | MR | Zbl

[5] D. A. Cox, “The homogeneous coordinate ring of toric variety”, J. Algebralc Geometry, 4 (1995), 17–50 | MR | Zbl

[6] D. A. Cox, “Recent developments in toric geometry”, Algebraic geometry – Santa Cruz 1995, v. 2, AMS, Providence, RI, 1997, 389–436 | DOI | MR

[7] A. M. Gleason, “The Cauchy-Weil theorem”, J. Math. Mech., 12 (1963), 429–444 | MR | Zbl

[8] M. Goresky, R. MacPherson, Stratified Morse Theory, Springer-Verlag, Berlin, 1988 | MR | Zbl

[9] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley, 1994 | MR

[10] A. Shchuplev, A. K. Tsikh, A. Yger, “Residual kernels with singularities on coordinate planes”, Proceedings of the Steklov Institute of Mathematics, 253, 2006, 256–274 | DOI | MR

[11] V. A. Vassiliev, “Topology of plane arrangements and their complements”, Russian Math. Surveys, 56:2 (2001), 365–401 | DOI | MR | Zbl