Mellin transform for monomial functions of the solution to the general polynomial system
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 150-156

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we give the calculation of Mellin transform for the monomial function of the vector-solution to the general polynomial system. We essentially use linearization of the system. In scalar case it defines bijective change of variables. In case of the system of equations we weaken requirements on the mapping given by the linearization: it is proper and its degree is equal to one.
Keywords: Mellin transform
Mots-clés : algebraic equation.
@article{JSFU_2013_6_2_a1,
     author = {Irina A. Antipova and Tatyana V. Zykova},
     title = {Mellin transform for monomial functions of the solution to the general polynomial system},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {150--156},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a1/}
}
TY  - JOUR
AU  - Irina A. Antipova
AU  - Tatyana V. Zykova
TI  - Mellin transform for monomial functions of the solution to the general polynomial system
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 150
EP  - 156
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a1/
LA  - en
ID  - JSFU_2013_6_2_a1
ER  - 
%0 Journal Article
%A Irina A. Antipova
%A Tatyana V. Zykova
%T Mellin transform for monomial functions of the solution to the general polynomial system
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 150-156
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a1/
%G en
%F JSFU_2013_6_2_a1
Irina A. Antipova; Tatyana V. Zykova. Mellin transform for monomial functions of the solution to the general polynomial system. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 150-156. http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a1/