Some results on isomorphisms of finite semifield planes
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 33-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors extend an approach to construct and classify the semifield projective planes using the linear space and spread set. Follows results are given: an estimate of the order of autotopism group and a number of isomorphic semifield planes defined by fixed linear space.
Keywords: semifield plane, linear space, spread set
Mots-clés : isomorphism, autotopism group.
@article{JSFU_2013_6_1_a3,
     author = {Olga V. Kravtsova and Sergei V. Panov and Irina V. Shevelyova},
     title = {Some results on isomorphisms of finite semifield planes},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {33--39},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a3/}
}
TY  - JOUR
AU  - Olga V. Kravtsova
AU  - Sergei V. Panov
AU  - Irina V. Shevelyova
TI  - Some results on isomorphisms of finite semifield planes
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 33
EP  - 39
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a3/
LA  - en
ID  - JSFU_2013_6_1_a3
ER  - 
%0 Journal Article
%A Olga V. Kravtsova
%A Sergei V. Panov
%A Irina V. Shevelyova
%T Some results on isomorphisms of finite semifield planes
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 33-39
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a3/
%G en
%F JSFU_2013_6_1_a3
Olga V. Kravtsova; Sergei V. Panov; Irina V. Shevelyova. Some results on isomorphisms of finite semifield planes. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 33-39. http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a3/

[1] H. Luneburg, Translation planes, Springer-Verlag, Berlin–Heidelberg–New York, 1980 | MR

[2] N. D. Podufalov, “On spread sets and collineations of projective planes”, Contem. Math., 131:1 (1992), 697–705 | DOI | MR | Zbl

[3] M. Biliotti, V. Jha, N. L. Johnson, G. Menichetti, “A structure theory for two-dimensional translation planes of order $q^2$ that admit collineation group of order $q^2$”, Geom. Dedicata, 29 (1989), 7–43 | DOI | MR | Zbl

[4] H. Huang, N. L. Johnson, “$8$ semifield planes of order $8^2$”, Discrete Math., 80:1 (1990), 69–79 | DOI | MR | Zbl

[5] D. R. Hughes, F. C. Piper, Projective planes, Springer-Verlag, New-York, 1973 | MR | Zbl

[6] O. V. Kravtsova, S. V. Panov, “Semifield planes defined by linear functions”, Algebra, logic and applications, Thesis of reports, Krasnoyarsk, 2010, 56–57 (in Russian)