A mean probability event for a~set of events
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 127-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present an eventological model of a mean probability event for a set of events. This model is analogous to the notion of a mean measure set [3].
Keywords: eventology, probability, universal probability space, universal elementary outcome, universal event, set of universal events, mean measure set, mean probability event, mean probability terrace partition.
@article{JSFU_2013_6_1_a13,
     author = {Oleg Yu. Vorobyev and Natalia A. Lukyanova},
     title = {A mean probability event for a~set of events},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {127--135},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a13/}
}
TY  - JOUR
AU  - Oleg Yu. Vorobyev
AU  - Natalia A. Lukyanova
TI  - A mean probability event for a~set of events
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 127
EP  - 135
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a13/
LA  - en
ID  - JSFU_2013_6_1_a13
ER  - 
%0 Journal Article
%A Oleg Yu. Vorobyev
%A Natalia A. Lukyanova
%T A mean probability event for a~set of events
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 127-135
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a13/
%G en
%F JSFU_2013_6_1_a13
Oleg Yu. Vorobyev; Natalia A. Lukyanova. A mean probability event for a~set of events. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 127-135. http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a13/

[1] O. Yu. Vorobyev, “Definition of probabilities of fire spread and estimating a mean fire spread set”, Protection of forest resources of Siberia, v. 1, Institute of forest and wood, SB AS USSR, Krasnoyarsk, 1975, 43–67 (in Russian)

[2] O. Yu. Vorobyev, “On set characterictics of states of distributed probability prosesses”, Izvestia of SB AS USSR, 1:3 (1977), 3–7 (in Russian)

[3] O. Yu. Vorobyev, Mean Measure Modeling, Nauka, Moscow, 1984 (in Russian)

[4] Probability and mathematical statistics, Encyclopedia, BRE, Moscow, 1999 (in Russian) | MR

[5] O. Yu. Vorobyev, Eventology, Siberian Federal University, Krasnoyarsk, 2007 (in Russian)

[6] O. Yu. Vorobyev, “A total system and a totality of systems: eventological similarity and distinction”, Proc. of the XI Int. FAMES Conf. on Financial and Actuarial Mathematics and Eventology of Safiety, 2012, 131–138 (in Russian)

[7] H. E. Robbins, “On the measure of a random set”, Ann. Math. Statist., 15 (1944), 70–74 ; “On the measure of a random set. II”, Ann. Math. Statist., 16 (1945), 342–347 | DOI | MR | Zbl | DOI | MR | Zbl

[8] O. Yu. Vorobyev, “A mean probability event for the set of events”, Proc. of the XI Int. FAMES Conf. on Financial and Actuarial Mathematics and Eventology of Safiety, 2012, 139–147 (in Russian)

[9] O. Yu. Vorobyev, “Eventological system analysis of safety”, Proc. of the XI Int. FAMES Conf. on Financial and Actuarial Mathematics and Eventology of Safiety, 2012, 113–125 (in Russia)

[10] O. Yu. Vorobyev, “Eventological analysis of systems: an event system under the off-system circumstances”, Proc. of the XI Int. FAMES Conf. on Financial and Actuarial Mathematics and Eventology of Safiety, 2012, 126–130 (in Russian)