Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2013_6_1_a13, author = {Oleg Yu. Vorobyev and Natalia A. Lukyanova}, title = {A mean probability event for a~set of events}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {127--135}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a13/} }
TY - JOUR AU - Oleg Yu. Vorobyev AU - Natalia A. Lukyanova TI - A mean probability event for a~set of events JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 127 EP - 135 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a13/ LA - en ID - JSFU_2013_6_1_a13 ER -
%0 Journal Article %A Oleg Yu. Vorobyev %A Natalia A. Lukyanova %T A mean probability event for a~set of events %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 127-135 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a13/ %G en %F JSFU_2013_6_1_a13
Oleg Yu. Vorobyev; Natalia A. Lukyanova. A mean probability event for a~set of events. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 127-135. http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a13/
[1] O. Yu. Vorobyev, “Definition of probabilities of fire spread and estimating a mean fire spread set”, Protection of forest resources of Siberia, v. 1, Institute of forest and wood, SB AS USSR, Krasnoyarsk, 1975, 43–67 (in Russian)
[2] O. Yu. Vorobyev, “On set characterictics of states of distributed probability prosesses”, Izvestia of SB AS USSR, 1:3 (1977), 3–7 (in Russian)
[3] O. Yu. Vorobyev, Mean Measure Modeling, Nauka, Moscow, 1984 (in Russian)
[4] Probability and mathematical statistics, Encyclopedia, BRE, Moscow, 1999 (in Russian) | MR
[5] O. Yu. Vorobyev, Eventology, Siberian Federal University, Krasnoyarsk, 2007 (in Russian)
[6] O. Yu. Vorobyev, “A total system and a totality of systems: eventological similarity and distinction”, Proc. of the XI Int. FAMES Conf. on Financial and Actuarial Mathematics and Eventology of Safiety, 2012, 131–138 (in Russian)
[7] H. E. Robbins, “On the measure of a random set”, Ann. Math. Statist., 15 (1944), 70–74 ; “On the measure of a random set. II”, Ann. Math. Statist., 16 (1945), 342–347 | DOI | MR | Zbl | DOI | MR | Zbl
[8] O. Yu. Vorobyev, “A mean probability event for the set of events”, Proc. of the XI Int. FAMES Conf. on Financial and Actuarial Mathematics and Eventology of Safiety, 2012, 139–147 (in Russian)
[9] O. Yu. Vorobyev, “Eventological system analysis of safety”, Proc. of the XI Int. FAMES Conf. on Financial and Actuarial Mathematics and Eventology of Safiety, 2012, 113–125 (in Russia)
[10] O. Yu. Vorobyev, “Eventological analysis of systems: an event system under the off-system circumstances”, Proc. of the XI Int. FAMES Conf. on Financial and Actuarial Mathematics and Eventology of Safiety, 2012, 126–130 (in Russian)