On new parametric representations of analytic area Nevanlinna type classes in a~circular ring~$\mathbf K$ on a~complex plane~$\mathbf C$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 114-119

Voir la notice de l'article provenant de la source Math-Net.Ru

We define certain new large area Nevanlinna type spaces in circular ring $K$ on a complex plane $\mathbb C$ and provide complete parametric representations for these new scales of analytic function spaces. Our results complement certain previously known assertions.
Keywords: analytic function, Nevanlinna characteristic, area Nevanlinna type spaces, circular ring.
@article{JSFU_2013_6_1_a11,
     author = {Romi F. Shamoyan},
     title = {On new parametric representations of analytic area {Nevanlinna} type classes in a~circular ring~$\mathbf K$ on a~complex plane~$\mathbf C$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {114--119},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a11/}
}
TY  - JOUR
AU  - Romi F. Shamoyan
TI  - On new parametric representations of analytic area Nevanlinna type classes in a~circular ring~$\mathbf K$ on a~complex plane~$\mathbf C$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 114
EP  - 119
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a11/
LA  - en
ID  - JSFU_2013_6_1_a11
ER  - 
%0 Journal Article
%A Romi F. Shamoyan
%T On new parametric representations of analytic area Nevanlinna type classes in a~circular ring~$\mathbf K$ on a~complex plane~$\mathbf C$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 114-119
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a11/
%G en
%F JSFU_2013_6_1_a11
Romi F. Shamoyan. On new parametric representations of analytic area Nevanlinna type classes in a~circular ring~$\mathbf K$ on a~complex plane~$\mathbf C$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 114-119. http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a11/