On new parametric representations of analytic area Nevanlinna type classes in a~circular ring~$\mathbf K$ on a~complex plane~$\mathbf C$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 114-119
Voir la notice de l'article provenant de la source Math-Net.Ru
We define certain new large area Nevanlinna type spaces in circular ring $K$ on a complex plane $\mathbb C$ and provide complete parametric representations for these new scales of analytic function spaces. Our results complement certain previously known assertions.
Keywords:
analytic function, Nevanlinna characteristic, area Nevanlinna type spaces, circular ring.
@article{JSFU_2013_6_1_a11,
author = {Romi F. Shamoyan},
title = {On new parametric representations of analytic area {Nevanlinna} type classes in a~circular ring~$\mathbf K$ on a~complex plane~$\mathbf C$},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {114--119},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a11/}
}
TY - JOUR AU - Romi F. Shamoyan TI - On new parametric representations of analytic area Nevanlinna type classes in a~circular ring~$\mathbf K$ on a~complex plane~$\mathbf C$ JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 114 EP - 119 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a11/ LA - en ID - JSFU_2013_6_1_a11 ER -
%0 Journal Article %A Romi F. Shamoyan %T On new parametric representations of analytic area Nevanlinna type classes in a~circular ring~$\mathbf K$ on a~complex plane~$\mathbf C$ %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 114-119 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a11/ %G en %F JSFU_2013_6_1_a11
Romi F. Shamoyan. On new parametric representations of analytic area Nevanlinna type classes in a~circular ring~$\mathbf K$ on a~complex plane~$\mathbf C$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 114-119. http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a11/