On asymptotic expansion of the conormal symbol of the singular Bochner--Martinelli operator on the surfaces with conical wedges
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 18-27
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the conormal symbol of the singular Bochner–Martinelli integral on a compact closed surface with conical wedges $\mathcal S$ in $\mathbb C^n$ and evaluate its asymptotic expansion.
Keywords:
singular Bochner–Martinelli operator, conical wedges.
Mots-clés : conormal symbol
Mots-clés : conormal symbol
@article{JSFU_2013_6_1_a1,
author = {Davlatboi Kh. Dzhumabaev},
title = {On asymptotic expansion of the conormal symbol of the singular {Bochner--Martinelli} operator on the surfaces with conical wedges},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {18--27},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a1/}
}
TY - JOUR AU - Davlatboi Kh. Dzhumabaev TI - On asymptotic expansion of the conormal symbol of the singular Bochner--Martinelli operator on the surfaces with conical wedges JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 18 EP - 27 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a1/ LA - en ID - JSFU_2013_6_1_a1 ER -
%0 Journal Article %A Davlatboi Kh. Dzhumabaev %T On asymptotic expansion of the conormal symbol of the singular Bochner--Martinelli operator on the surfaces with conical wedges %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 18-27 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a1/ %G en %F JSFU_2013_6_1_a1
Davlatboi Kh. Dzhumabaev. On asymptotic expansion of the conormal symbol of the singular Bochner--Martinelli operator on the surfaces with conical wedges. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 18-27. http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a1/