The estimates of solutions of adjoint heat problem in spherical area
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 485-496.

Voir la notice de l'article provenant de la source Math-Net.Ru

Spherically symmetric adjoint initial-boundary value problem of heat propagation in closed bounded spherical regions has been researched. A priori estimates of temperature have been obtained subject to internal heat sources. Friedrichs inequality has been generalized for such areas.
Keywords: initial-boundary value problem, a priori estimates, Green function
Mots-clés : interface.
@article{JSFU_2012_5_4_a5,
     author = {Viktor K. Andreev and Ilona A. Reznikova},
     title = {The estimates of solutions of adjoint heat problem in spherical area},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {485--496},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a5/}
}
TY  - JOUR
AU  - Viktor K. Andreev
AU  - Ilona A. Reznikova
TI  - The estimates of solutions of adjoint heat problem in spherical area
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 485
EP  - 496
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a5/
LA  - ru
ID  - JSFU_2012_5_4_a5
ER  - 
%0 Journal Article
%A Viktor K. Andreev
%A Ilona A. Reznikova
%T The estimates of solutions of adjoint heat problem in spherical area
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 485-496
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a5/
%G ru
%F JSFU_2012_5_4_a5
Viktor K. Andreev; Ilona A. Reznikova. The estimates of solutions of adjoint heat problem in spherical area. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 485-496. http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a5/

[1] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1972 | MR | Zbl

[2] A. D. Polyanin, Spravochnik po lineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2001 | Zbl

[3] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, Fizmatlit, M., 2001

[4] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979 | MR

[5] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Lan, M., 2003

[6] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Sprav., Nauka, M., 1979 | MR