The estimates of solutions of adjoint heat problem in spherical area
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 485-496
Cet article a éte moissonné depuis la source Math-Net.Ru
Spherically symmetric adjoint initial-boundary value problem of heat propagation in closed bounded spherical regions has been researched. A priori estimates of temperature have been obtained subject to internal heat sources. Friedrichs inequality has been generalized for such areas.
Keywords:
initial-boundary value problem, a priori estimates, Green function
Mots-clés : interface.
Mots-clés : interface.
@article{JSFU_2012_5_4_a5,
author = {Viktor K. Andreev and Ilona A. Reznikova},
title = {The estimates of solutions of adjoint heat problem in spherical area},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {485--496},
year = {2012},
volume = {5},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a5/}
}
TY - JOUR AU - Viktor K. Andreev AU - Ilona A. Reznikova TI - The estimates of solutions of adjoint heat problem in spherical area JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2012 SP - 485 EP - 496 VL - 5 IS - 4 UR - http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a5/ LA - ru ID - JSFU_2012_5_4_a5 ER -
%0 Journal Article %A Viktor K. Andreev %A Ilona A. Reznikova %T The estimates of solutions of adjoint heat problem in spherical area %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2012 %P 485-496 %V 5 %N 4 %U http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a5/ %G ru %F JSFU_2012_5_4_a5
Viktor K. Andreev; Ilona A. Reznikova. The estimates of solutions of adjoint heat problem in spherical area. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 485-496. http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a5/
[1] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1972 | MR | Zbl
[2] A. D. Polyanin, Spravochnik po lineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2001 | Zbl
[3] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, Fizmatlit, M., 2001
[4] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979 | MR
[5] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Lan, M., 2003
[6] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Sprav., Nauka, M., 1979 | MR