A multidimensional analog of the Weierstrass $\zeta$-function in the problem of the number of integer points in a~domain
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 480-484.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multidimensional analog of the Weierstrass $\zeta$-function in $\mathbb C^n$ is a differential $(0,n-1)$-form with singularities in the points of the integer lattice $\Gamma\subset\mathbb C^n$. Using this form we construct a $\Gamma$-invariant $(n,n-1)$-form $\tau(z)\wedge dz$. The integral of this form over a domain's boundary is equal to difference between the number of integer points in the domain and its volume.
Keywords: Weierstrass $\zeta$-function, integer lattice, Bochner–Martinelli kernel, Gauss circle problem.
@article{JSFU_2012_5_4_a4,
     author = {Elena N. Tereshonok and Alexey V. Shchuplev},
     title = {A multidimensional analog of the {Weierstrass} $\zeta$-function in the problem of the number of integer points in a~domain},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {480--484},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a4/}
}
TY  - JOUR
AU  - Elena N. Tereshonok
AU  - Alexey V. Shchuplev
TI  - A multidimensional analog of the Weierstrass $\zeta$-function in the problem of the number of integer points in a~domain
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 480
EP  - 484
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a4/
LA  - en
ID  - JSFU_2012_5_4_a4
ER  - 
%0 Journal Article
%A Elena N. Tereshonok
%A Alexey V. Shchuplev
%T A multidimensional analog of the Weierstrass $\zeta$-function in the problem of the number of integer points in a~domain
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 480-484
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a4/
%G en
%F JSFU_2012_5_4_a4
Elena N. Tereshonok; Alexey V. Shchuplev. A multidimensional analog of the Weierstrass $\zeta$-function in the problem of the number of integer points in a~domain. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 480-484. http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a4/

[1] R. K. Guy, Unsolved problems in number theory, Springer-Verlag, New York, 1994 | MR

[2] S. E. Cappell, J. L. Shaneson, Some problems in number theory. I: the circle problem, 2007, arXiv: math/0702613v3.pdf

[3] L. A. Aizenberg, “Application of multidimensional logarithmic residue to represent the difference between the number of integer points in a domain and its volume in the form of an integral”, Dokl. Nauk SSSR, 270:3 (1983), 521–523 (Russian) | MR

[4] E. Krätzel, Lattice points, Mathematics and its Applications, East European Series, 33, 1988 | MR

[5] A. N. Varchenko, “Number of lattice points in families of homothetic domains in $\mathbb R^n$”, Funkts. Anal. Prilozh., 17:2 (1983), 1–6 (Russian) | MR | Zbl

[6] R. Diaz, S. Robins, “Pick's Formula via the Weierstrass $\wp$-function”, The American Mathematical Monthly, 102:5 (1995), 431–437 | DOI | MR | Zbl

[7] P. Zappa, “Sulle classi di Dolbeault di tipo $(0,n-1)$ con singolarita in un insieme discreto”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 8:70 (1981), 87–95 (Italian)