Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2012_5_4_a4, author = {Elena N. Tereshonok and Alexey V. Shchuplev}, title = {A multidimensional analog of the {Weierstrass} $\zeta$-function in the problem of the number of integer points in a~domain}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {480--484}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a4/} }
TY - JOUR AU - Elena N. Tereshonok AU - Alexey V. Shchuplev TI - A multidimensional analog of the Weierstrass $\zeta$-function in the problem of the number of integer points in a~domain JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2012 SP - 480 EP - 484 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a4/ LA - en ID - JSFU_2012_5_4_a4 ER -
%0 Journal Article %A Elena N. Tereshonok %A Alexey V. Shchuplev %T A multidimensional analog of the Weierstrass $\zeta$-function in the problem of the number of integer points in a~domain %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2012 %P 480-484 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a4/ %G en %F JSFU_2012_5_4_a4
Elena N. Tereshonok; Alexey V. Shchuplev. A multidimensional analog of the Weierstrass $\zeta$-function in the problem of the number of integer points in a~domain. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 480-484. http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a4/
[1] R. K. Guy, Unsolved problems in number theory, Springer-Verlag, New York, 1994 | MR
[2] S. E. Cappell, J. L. Shaneson, Some problems in number theory. I: the circle problem, 2007, arXiv: math/0702613v3.pdf
[3] L. A. Aizenberg, “Application of multidimensional logarithmic residue to represent the difference between the number of integer points in a domain and its volume in the form of an integral”, Dokl. Nauk SSSR, 270:3 (1983), 521–523 (Russian) | MR
[4] E. Krätzel, Lattice points, Mathematics and its Applications, East European Series, 33, 1988 | MR
[5] A. N. Varchenko, “Number of lattice points in families of homothetic domains in $\mathbb R^n$”, Funkts. Anal. Prilozh., 17:2 (1983), 1–6 (Russian) | MR | Zbl
[6] R. Diaz, S. Robins, “Pick's Formula via the Weierstrass $\wp$-function”, The American Mathematical Monthly, 102:5 (1995), 431–437 | DOI | MR | Zbl
[7] P. Zappa, “Sulle classi di Dolbeault di tipo $(0,n-1)$ con singolarita in un insieme discreto”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 8:70 (1981), 87–95 (Italian)