On multipliers of holomorphic $F^{p,q}_\alpha$ type spaces on the unit polydisc
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 471-479.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe certain new spaces of coefficient multipliers of analytic Lizorkin–Triebel $F^{p,q}_\alpha$ type spaces in the unit polydisc with some restriction on parameters. This extends some previously known assertions on coefficient multipliers in classical Bergman $A^p_\alpha$ spaces in the unit disk.
Keywords: polydisc, analytic functions, analytic Lizorkin–Triebel spaces.
Mots-clés : multipliers
@article{JSFU_2012_5_4_a3,
     author = {Romi F. Shamoyan and Milo\v{s} Arsenovi\'c},
     title = {On multipliers of holomorphic $F^{p,q}_\alpha$ type spaces on the unit polydisc},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {471--479},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a3/}
}
TY  - JOUR
AU  - Romi F. Shamoyan
AU  - Miloš Arsenović
TI  - On multipliers of holomorphic $F^{p,q}_\alpha$ type spaces on the unit polydisc
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 471
EP  - 479
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a3/
LA  - en
ID  - JSFU_2012_5_4_a3
ER  - 
%0 Journal Article
%A Romi F. Shamoyan
%A Miloš Arsenović
%T On multipliers of holomorphic $F^{p,q}_\alpha$ type spaces on the unit polydisc
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 471-479
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a3/
%G en
%F JSFU_2012_5_4_a3
Romi F. Shamoyan; Miloš Arsenović. On multipliers of holomorphic $F^{p,q}_\alpha$ type spaces on the unit polydisc. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 471-479. http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a3/

[1] R. F. Shamoyan, “On multipliers from Bergman type spaces into Hardy spaces in the polydisc”, Ukrainian. Math. Journal, 2000, no. 10, 1405–1415 (Russian) | MR

[2] R. F. Shamoyan, “Continuous functionals and multipliers of a class of functions analytic in the polydisc”, Izv. Vuzov Matematika, 2000, no. 7, 67–69 | MR | Zbl

[3] S. V Shvedenko, “Hardy classes and related spaces of analytic functions in the unit disc, polydisc and ball”, Itogi nauki i tekhniki, Ser. matematicheski analiz, 23, VINITI, 1985, 2–124 (Russian) | MR | Zbl

[4] M. Djrbashian, F. Shamoian, Topics in the theory of $A^p_\alpha$ classes, Teubner Texte zur Mathematik, 105, 1988 | MR | Zbl

[5] V. S. Guliev, P. I. Lizorkin, “Holomorphic and harmonic function classes in the polydisc and its boundary values”, Trudi Math. Inst. RAN, 204, 1993, 137–159 (Russian) | MR | Zbl

[6] J. Ortega, J. Fabrega, “Hardy's inequality and embeddings in holomorphic Lizorkin–Triebel spaces”, Illinois Journal of Mathematics, 43:4 (1999), 733–751 | MR | Zbl

[7] J. Ortega, J. Fabrega, “Pointwise multipliers and corona type decomposition in BMOA”, Ann. Inst. Fourier, 46 (1996), 111–137 | DOI | MR | Zbl

[8] J. Ortega, J. Fabrega, “Holomoprhic Triebel-Lizorkin spaces”, J. Funct. Anal., 151 (1997), 177–212 | DOI | MR | Zbl

[9] R. F. Shamoyan, “Multipliers of power series Toeplitz operators and space embeddings”, Izv. Nat. Acad. Nauk Armenii, 34:4 (1999), 43–59 | MR | Zbl

[10] R. F. Shamoyan, S. Li, “On some properties of a differential operator in the polydisc”, Banach Journal of Mathematical Analysis, 3 (2009), 68–84 | MR

[11] R. Shamoyan, “Holomorphic Lizorkin–Triebel spaces in the unit disk and polydisk”, Izvestia Nat. Acad. Armenii, 3:37 (2002), 57–78 | MR | Zbl

[12] R. M. Trigub, “Multipliers of the $H^p(\mathbb D^m)$ class for $p\in(0,1)$, approximation properties of summability methods for power series”, Doklady. RAN, 335:6 (1994), 697–699 (Russian) | MR | Zbl

[13] M. Jevtic, M. Pavlovic, “Coefficient multipliers on spaces of analytic functions”, Acta Sci. Math., 64 (1998), 531–545 | MR | Zbl

[14] O. Blasco, M. Pavlovic, Coefficient multipliers in spaces of analytic functions, Preprint, 2011 | MR

[15] M. Matelievic, M. Pavlovic, “Multipliers of $H^p$ and $BMOA$”, Pacific J. Math., 146 (1990), 71–89 | MR

[16] H. Triebel, Theory of Function Spaces, Springer–Birkhauser, 1983 | MR

[17] J. B. Garnett, Bounded Analytic Functions, Academic Press, 1981 | MR | Zbl

[18] O. Blasco, “Multipliers on spaces of analytic functions”, Canad. J. Math., 47:1 (1995), 44–64 | DOI | MR | Zbl

[19] O. Blasco, J. L. Arregui, “Multipliers on vector valued Bergman spaces”, Canad. J. Math., 54:6 (2002), 1165–1186 | DOI | MR | Zbl

[20] M. Nawrocki, “Multipliers, linear functionals and the Frechet envelope of the Smirnov class $N_\ast(U^n)$”, Trans. Amer. Math. Soc., 322:2 (1990), 493–506 | MR | Zbl

[21] M. Nowak, “Coefficient multipliers of spaces of analytic functions”, Ann. Univ. Mar. Sklod. Lublin, 52 (1998), 108–119 | MR