Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2012_5_4_a13, author = {Tatyana I. Nekrasova}, title = {Cauchy problem for multidimensional difference equations in lattice cones}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {576--580}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a13/} }
TY - JOUR AU - Tatyana I. Nekrasova TI - Cauchy problem for multidimensional difference equations in lattice cones JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2012 SP - 576 EP - 580 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a13/ LA - ru ID - JSFU_2012_5_4_a13 ER -
%0 Journal Article %A Tatyana I. Nekrasova %T Cauchy problem for multidimensional difference equations in lattice cones %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2012 %P 576-580 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a13/ %G ru %F JSFU_2012_5_4_a13
Tatyana I. Nekrasova. Cauchy problem for multidimensional difference equations in lattice cones. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 576-580. http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a13/
[1] M. Bousquet-Mélou, M. Petkovšek, “Linear recurrences with constant coefficients: the multivariate case”, Discrete Mathematics, 225 (2000), 51–75 | DOI | MR | Zbl
[2] E. K. Leinartas, “Kratnye ryady Lorana i fundamentalnye resheniya lineinykh raznostnykh uravnenii”, Sibirskii matematicheskii zhurnal, 48:2 (2007), 335–340 | MR | Zbl
[3] T. Mansour, “Counting peaks at height $k$ in a Dyck path”, Journal of Integer Sequences, 5 (2002), 1–10 | MR | Zbl
[4] D. Merlini, “Generating functions for the area below some lattice paths”, Discrete Mathematics and Theoretical Computer Science AC, 2003, 217–228 | MR | Zbl
[5] M. Forsberg, M. Passare, A. Tsikh, “Laurent Determinants and Arrangements of Hyperplane Amoebas”, Advances in Math., 151 (2000), 45–70 | DOI | MR | Zbl
[6] M. Brion, M. Vergne, “Residue formulae, vector partition functions and lattice points in rational polytopes”, Journal of AMS, 10:4 (1997), 797–833 | MR | Zbl