Cauchy problem for multidimensional difference equations in lattice cones
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 576-580.

Voir la notice de l'article provenant de la source Math-Net.Ru

We formulated condition ensuring the existence and uniqueness of solutions of the Cauchy problem for multidimensional linear differential equations with constant coefficients in the lattice cone. Based on the concept of a fundamental solution we deduced the formulae for solution of this problem.
Keywords: multidimensional difference equation, Cauchy problem.
@article{JSFU_2012_5_4_a13,
     author = {Tatyana I. Nekrasova},
     title = {Cauchy problem for multidimensional difference equations in lattice cones},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {576--580},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a13/}
}
TY  - JOUR
AU  - Tatyana I. Nekrasova
TI  - Cauchy problem for multidimensional difference equations in lattice cones
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 576
EP  - 580
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a13/
LA  - ru
ID  - JSFU_2012_5_4_a13
ER  - 
%0 Journal Article
%A Tatyana I. Nekrasova
%T Cauchy problem for multidimensional difference equations in lattice cones
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 576-580
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a13/
%G ru
%F JSFU_2012_5_4_a13
Tatyana I. Nekrasova. Cauchy problem for multidimensional difference equations in lattice cones. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 576-580. http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a13/

[1] M. Bousquet-Mélou, M. Petkovšek, “Linear recurrences with constant coefficients: the multivariate case”, Discrete Mathematics, 225 (2000), 51–75 | DOI | MR | Zbl

[2] E. K. Leinartas, “Kratnye ryady Lorana i fundamentalnye resheniya lineinykh raznostnykh uravnenii”, Sibirskii matematicheskii zhurnal, 48:2 (2007), 335–340 | MR | Zbl

[3] T. Mansour, “Counting peaks at height $k$ in a Dyck path”, Journal of Integer Sequences, 5 (2002), 1–10 | MR | Zbl

[4] D. Merlini, “Generating functions for the area below some lattice paths”, Discrete Mathematics and Theoretical Computer Science AC, 2003, 217–228 | MR | Zbl

[5] M. Forsberg, M. Passare, A. Tsikh, “Laurent Determinants and Arrangements of Hyperplane Amoebas”, Advances in Math., 151 (2000), 45–70 | DOI | MR | Zbl

[6] M. Brion, M. Vergne, “Residue formulae, vector partition functions and lattice points in rational polytopes”, Journal of AMS, 10:4 (1997), 797–833 | MR | Zbl