Cauchy problem for multidimensional difference equations in lattice cones
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 576-580 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We formulated condition ensuring the existence and uniqueness of solutions of the Cauchy problem for multidimensional linear differential equations with constant coefficients in the lattice cone. Based on the concept of a fundamental solution we deduced the formulae for solution of this problem.
Keywords: multidimensional difference equation, Cauchy problem.
@article{JSFU_2012_5_4_a13,
     author = {Tatyana I. Nekrasova},
     title = {Cauchy problem for multidimensional difference equations in lattice cones},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {576--580},
     year = {2012},
     volume = {5},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a13/}
}
TY  - JOUR
AU  - Tatyana I. Nekrasova
TI  - Cauchy problem for multidimensional difference equations in lattice cones
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 576
EP  - 580
VL  - 5
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a13/
LA  - ru
ID  - JSFU_2012_5_4_a13
ER  - 
%0 Journal Article
%A Tatyana I. Nekrasova
%T Cauchy problem for multidimensional difference equations in lattice cones
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 576-580
%V 5
%N 4
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a13/
%G ru
%F JSFU_2012_5_4_a13
Tatyana I. Nekrasova. Cauchy problem for multidimensional difference equations in lattice cones. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 576-580. http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a13/

[1] M. Bousquet-Mélou, M. Petkovšek, “Linear recurrences with constant coefficients: the multivariate case”, Discrete Mathematics, 225 (2000), 51–75 | DOI | MR | Zbl

[2] E. K. Leinartas, “Kratnye ryady Lorana i fundamentalnye resheniya lineinykh raznostnykh uravnenii”, Sibirskii matematicheskii zhurnal, 48:2 (2007), 335–340 | MR | Zbl

[3] T. Mansour, “Counting peaks at height $k$ in a Dyck path”, Journal of Integer Sequences, 5 (2002), 1–10 | MR | Zbl

[4] D. Merlini, “Generating functions for the area below some lattice paths”, Discrete Mathematics and Theoretical Computer Science AC, 2003, 217–228 | MR | Zbl

[5] M. Forsberg, M. Passare, A. Tsikh, “Laurent Determinants and Arrangements of Hyperplane Amoebas”, Advances in Math., 151 (2000), 45–70 | DOI | MR | Zbl

[6] M. Brion, M. Vergne, “Residue formulae, vector partition functions and lattice points in rational polytopes”, Journal of AMS, 10:4 (1997), 797–833 | MR | Zbl