Holomorphic continuation of functions along finite families of complex lines in the ball
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 547-557.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider continuous functions given on the boundary of a ball $B$ of $\mathbb C^n$, $n>1$ and having one-dimensional property of holomorphic extension along the families of complex lines, passing through finite number of points of $B$. We study the problem of existence of holomorphic continuation of such functions in a ball $B$.
Keywords: holomorphic continuation
Mots-clés : Poisson integral.
@article{JSFU_2012_5_4_a10,
     author = {Alexander M. Kytmanov and Simona G. Myslivets},
     title = {Holomorphic continuation of functions along finite families of complex lines in the ball},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {547--557},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a10/}
}
TY  - JOUR
AU  - Alexander M. Kytmanov
AU  - Simona G. Myslivets
TI  - Holomorphic continuation of functions along finite families of complex lines in the ball
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 547
EP  - 557
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a10/
LA  - ru
ID  - JSFU_2012_5_4_a10
ER  - 
%0 Journal Article
%A Alexander M. Kytmanov
%A Simona G. Myslivets
%T Holomorphic continuation of functions along finite families of complex lines in the ball
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 547-557
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a10/
%G ru
%F JSFU_2012_5_4_a10
Alexander M. Kytmanov; Simona G. Myslivets. Holomorphic continuation of functions along finite families of complex lines in the ball. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 547-557. http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a10/

[1] M. L. Agranovskii, R. E. Valskii, “Maksimalnost invariantnykh algebr funktsii”, Sib. matem. zhurn., 12:1 (1971), 3–12 | MR

[2] E. L. Stout, “The boundary values of holomorphic functions of several complex variables”, Duke Math. J., 44:1 (1977), 105–108 | DOI | MR | Zbl

[3] L. A. Aizenberg, A. P. Yuzhakov, Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979 | MR

[4] A. M. Kytmanov, S. G. Myslivets, “Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions”, J. Math. Sci., 120:6 (2004), 1842–1867 | DOI | MR | Zbl

[5] J. Globevnik, E. L. Stout, “Boundary Morera theorems for holomorphic functions of several complex variables”, Duke Math. J., 64:3 (1991), 571–615 | DOI | MR | Zbl

[6] A. M. Kytmanov, S. G. Myslivets, “O semeistvakh kompleksnykh pryamykh, dostatochnykh dlya golomorfnogo prodolzheniya”, Matem. zametki, 83:4 (2008), 545–551 | DOI | MR | Zbl

[7] A. M. Kytmanov, S. G. Myslivets, V. I. Kuzovatov, “Semeistva kompleksnykh pryamykh minimalnoi razmernosti, dostatochnye dlya golomorfnogo prodolzheniya funktsii”, Sib. matem. zhurn., 52:2 (2011), 326–339 | MR | Zbl

[8] M. Agranovsky, “Propagation of boundary $CR$-foliations and Morera type theorems for manifolds with attached analytic discs”, Advances in Math., 211:1 (2007), 284–326 | DOI | MR | Zbl

[9] M. Agranovsky, “Analog of a theorem of Forelli for boundary values of holomorphic functions on the unit ball of $\mathbb C^n$”, Journal d'Analyse Mathematique, 113:1 (2011), 293–304 | DOI | MR | Zbl

[10] L. Baracco, “Holomorphic extension from the sphere to the ball”, Journal of Mathematical Analysis and Applications, 388:2 (2012), 760–762 | DOI | MR | Zbl

[11] J. Globevnik, “Small families of complex lines for testing holomorphic extendibility”, Amer. J. of Math. (to appear)

[12] A. M. Kytmanov, Integral Bokhnera–Martinelli i ego primeneniya, Nauka, Novosibirsk, 1992

[13] U. Rudin, Teoriya funktsii v edinichnom share iz $\mathbb C^n$, Mir, M., 1984 | MR | Zbl