Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2012_5_4_a10, author = {Alexander M. Kytmanov and Simona G. Myslivets}, title = {Holomorphic continuation of functions along finite families of complex lines in the ball}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {547--557}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a10/} }
TY - JOUR AU - Alexander M. Kytmanov AU - Simona G. Myslivets TI - Holomorphic continuation of functions along finite families of complex lines in the ball JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2012 SP - 547 EP - 557 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a10/ LA - ru ID - JSFU_2012_5_4_a10 ER -
%0 Journal Article %A Alexander M. Kytmanov %A Simona G. Myslivets %T Holomorphic continuation of functions along finite families of complex lines in the ball %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2012 %P 547-557 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a10/ %G ru %F JSFU_2012_5_4_a10
Alexander M. Kytmanov; Simona G. Myslivets. Holomorphic continuation of functions along finite families of complex lines in the ball. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 547-557. http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a10/
[1] M. L. Agranovskii, R. E. Valskii, “Maksimalnost invariantnykh algebr funktsii”, Sib. matem. zhurn., 12:1 (1971), 3–12 | MR
[2] E. L. Stout, “The boundary values of holomorphic functions of several complex variables”, Duke Math. J., 44:1 (1977), 105–108 | DOI | MR | Zbl
[3] L. A. Aizenberg, A. P. Yuzhakov, Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979 | MR
[4] A. M. Kytmanov, S. G. Myslivets, “Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions”, J. Math. Sci., 120:6 (2004), 1842–1867 | DOI | MR | Zbl
[5] J. Globevnik, E. L. Stout, “Boundary Morera theorems for holomorphic functions of several complex variables”, Duke Math. J., 64:3 (1991), 571–615 | DOI | MR | Zbl
[6] A. M. Kytmanov, S. G. Myslivets, “O semeistvakh kompleksnykh pryamykh, dostatochnykh dlya golomorfnogo prodolzheniya”, Matem. zametki, 83:4 (2008), 545–551 | DOI | MR | Zbl
[7] A. M. Kytmanov, S. G. Myslivets, V. I. Kuzovatov, “Semeistva kompleksnykh pryamykh minimalnoi razmernosti, dostatochnye dlya golomorfnogo prodolzheniya funktsii”, Sib. matem. zhurn., 52:2 (2011), 326–339 | MR | Zbl
[8] M. Agranovsky, “Propagation of boundary $CR$-foliations and Morera type theorems for manifolds with attached analytic discs”, Advances in Math., 211:1 (2007), 284–326 | DOI | MR | Zbl
[9] M. Agranovsky, “Analog of a theorem of Forelli for boundary values of holomorphic functions on the unit ball of $\mathbb C^n$”, Journal d'Analyse Mathematique, 113:1 (2011), 293–304 | DOI | MR | Zbl
[10] L. Baracco, “Holomorphic extension from the sphere to the ball”, Journal of Mathematical Analysis and Applications, 388:2 (2012), 760–762 | DOI | MR | Zbl
[11] J. Globevnik, “Small families of complex lines for testing holomorphic extendibility”, Amer. J. of Math. (to appear)
[12] A. M. Kytmanov, Integral Bokhnera–Martinelli i ego primeneniya, Nauka, Novosibirsk, 1992
[13] U. Rudin, Teoriya funktsii v edinichnom share iz $\mathbb C^n$, Mir, M., 1984 | MR | Zbl