Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2012_5_3_a7, author = {Georgy P. Egorychev}, title = {An integral representation and computation of multiple sum in the theory of cubature formulas}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {363--369}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a7/} }
TY - JOUR AU - Georgy P. Egorychev TI - An integral representation and computation of multiple sum in the theory of cubature formulas JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2012 SP - 363 EP - 369 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a7/ LA - ru ID - JSFU_2012_5_3_a7 ER -
%0 Journal Article %A Georgy P. Egorychev %T An integral representation and computation of multiple sum in the theory of cubature formulas %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2012 %P 363-369 %V 5 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a7/ %G ru %F JSFU_2012_5_3_a7
Georgy P. Egorychev. An integral representation and computation of multiple sum in the theory of cubature formulas. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 363-369. http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a7/
[1] S. Heo, Y. Xu, “Invariant cubature formulae for spheres and balls by combinatorial methods”, SIAM J. Numer. Anal., 38:2 (2000), 626–638 | DOI | MR | Zbl
[2] G. P. Egorychev, Integral Representation and the Computation of Combinatorial Sums, Nauka, Novosibirsk, 1977 (in Russian) ; English transl.: Transl. Math. Monographs, 59, Amer. Math. Soc., Providence, RI, 1984 ; 2nd ed., 1989 | MR | Zbl | MR | Zbl
[3] G. P. Egorychev, “Method of coefficients: an algebraic characterization and recent applications”, Labours Waterloo Workshop on Computer Algebra (Waterloo, 5–7 May 2008), Springer Verlag, 2009, 1–33 | MR
[4] G. P. Egorychev, E. V. Zima, “Integral representation and algorithms for closed form summation”, Handbook of Algebra, 5, ed. M. Hazewinkel, Elsevier, 2008, 459–529 | DOI | MR | Zbl
[5] V. K. Leontev, Izbrannye problemy kombinatornogo analiza, MSTU Bauman, 2001
[6] D. Foata, G.-N. Han, “The $q$-tangent and $q$-secant numbers via basic eulerian polynomials”, Proc. Amer. Math. Soc., 138 (2010), 385–393 | DOI | MR | Zbl