An integral representation and computation of multiple sum in the theory of cubature formulas
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 363-369.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article is a finding new simple proof of hard identity from theory of cubature formulas by means of the method of coefficients.
Keywords: combinatorial sums, integral representation, cubature formulas.
@article{JSFU_2012_5_3_a7,
     author = {Georgy P. Egorychev},
     title = {An integral representation and computation of multiple sum in the theory of cubature formulas},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {363--369},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a7/}
}
TY  - JOUR
AU  - Georgy P. Egorychev
TI  - An integral representation and computation of multiple sum in the theory of cubature formulas
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 363
EP  - 369
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a7/
LA  - ru
ID  - JSFU_2012_5_3_a7
ER  - 
%0 Journal Article
%A Georgy P. Egorychev
%T An integral representation and computation of multiple sum in the theory of cubature formulas
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 363-369
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a7/
%G ru
%F JSFU_2012_5_3_a7
Georgy P. Egorychev. An integral representation and computation of multiple sum in the theory of cubature formulas. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 363-369. http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a7/

[1] S. Heo, Y. Xu, “Invariant cubature formulae for spheres and balls by combinatorial methods”, SIAM J. Numer. Anal., 38:2 (2000), 626–638 | DOI | MR | Zbl

[2] G. P. Egorychev, Integral Representation and the Computation of Combinatorial Sums, Nauka, Novosibirsk, 1977 (in Russian) ; English transl.: Transl. Math. Monographs, 59, Amer. Math. Soc., Providence, RI, 1984 ; 2nd ed., 1989 | MR | Zbl | MR | Zbl

[3] G. P. Egorychev, “Method of coefficients: an algebraic characterization and recent applications”, Labours Waterloo Workshop on Computer Algebra (Waterloo, 5–7 May 2008), Springer Verlag, 2009, 1–33 | MR

[4] G. P. Egorychev, E. V. Zima, “Integral representation and algorithms for closed form summation”, Handbook of Algebra, 5, ed. M. Hazewinkel, Elsevier, 2008, 459–529 | DOI | MR | Zbl

[5] V. K. Leontev, Izbrannye problemy kombinatornogo analiza, MSTU Bauman, 2001

[6] D. Foata, G.-N. Han, “The $q$-tangent and $q$-secant numbers via basic eulerian polynomials”, Proc. Amer. Math. Soc., 138 (2010), 385–393 | DOI | MR | Zbl