On the approximation of a~parabolic inverse problem by pseudoparabolic one
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 326-336.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of the solution to the inverse problem on the identification of the leading coefficient of the multi-dimensional pseudoparabolic equation are studied. It is proved that the inverse problem for the pseudoparabolic equation approximates the appropriate inverse problem for the parabolic equation of filtration. The existence and uniqueness of the solution to the parabolic inverse problem is established.
Keywords: inverse problems for PDE, existence and uniqueness theorems.
Mots-clés : filtration, pseudoparabolic equation, parabolic equation
@article{JSFU_2012_5_3_a3,
     author = {Anna Sh. Lyubanova},
     title = {On the approximation of a~parabolic inverse problem by pseudoparabolic one},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {326--336},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a3/}
}
TY  - JOUR
AU  - Anna Sh. Lyubanova
TI  - On the approximation of a~parabolic inverse problem by pseudoparabolic one
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 326
EP  - 336
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a3/
LA  - en
ID  - JSFU_2012_5_3_a3
ER  - 
%0 Journal Article
%A Anna Sh. Lyubanova
%T On the approximation of a~parabolic inverse problem by pseudoparabolic one
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 326-336
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a3/
%G en
%F JSFU_2012_5_3_a3
Anna Sh. Lyubanova. On the approximation of a~parabolic inverse problem by pseudoparabolic one. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 326-336. http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a3/

[1] A. Sh. Lyubanova, A. Tani, “On Inverse Problems for Pseudoparabolic and Parabolic Equations of Filtration”, Inverse Problems in science and enjineering, 19 (2011), 1023–1042 | DOI | MR | Zbl

[2] W. Rundell, “Determination of an unknown nonhomogeneous term in a linear partial differential equation from overspecified boundary data”, Appl. Anal., 10 (1980), 231–242 | DOI | MR | Zbl

[3] A. A. Asanov, E. R. Atamanov, “An inverse problem for an operator integro-differential pseudoparabolic equation”, Siberian Math. J., 36:4 (1995), 752–762 (Russian) | DOI | MR | Zbl

[4] A. Lorenzi, E. Paparoni, “Identification problems for pseudoparabolic integrodifferential operator equations”, J. Inver. Ill-Posed Probl., 5 (1997), 235–253 | DOI | MR | Zbl

[5] M. Sh. Mamayusupov, “The problem of determining coefficients of a pseudoparabolic equation”, Studies in integro-differential equations, 16, “Ilim”, Frunze, 1983, 290–297 (Russian) | MR

[6] A. Sh. Lyubanova, A. Tani, “An inverse problem for pseudoparabolic equation of filtration. The existence, uniqueness and regularity”, Appl. Anal., 90 (2011), 1557–1571 | DOI | MR | Zbl

[7] G. I. Barenblatt, Iu. P. Zheltov, I. N. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured blocks [strata]”, J. Appl. Math. Mech., 24 (1960), 1286–1303 (Russian) | DOI | MR | Zbl

[8] T. W. Ting, “Parabolic and pseudo-parabolic partial differential equations”, J. Math. Soc. Japan., 21 (1969), 440–453 | DOI | MR | Zbl

[9] J. R. Cannon, W. Rundell, “Recovering a time dependent coefficient in a parabolic differential equation”, J. Math. Anal. Appl., 160 (1991), 572–582 | DOI | MR | Zbl

[10] P. DuChateau, “Monotonicity and invertibility of coefficient-to-data mappings for parabolic inverse problems”, SIAM J. Math. Anal., 26 (1995), 1473–1487 | DOI | MR | Zbl

[11] A. Hasanov, P. DuChateau, B. Pektas, “An adjoint problem approach and coarse-fine mesh method for identification of the diffusion coefficient in a linear parabolic equation”, Journal of Inverse and Ill-Posed Problems, 14 (2006), 435–463 | DOI | MR | Zbl

[12] M. V. Klibanov, “Inverse problems and Carleman estimates”, Inverse Problems, 8 (1992), 575–596 | DOI | MR | Zbl

[13] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moskow, 1967 (Russian)

[14] R. Temam, Navier-Stokes Equations. Theory and numerical analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Company, Amsterdam, 1974