On elliptic equations with spectral parameter and discontinuous nonlinearity
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 417-421.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main boundary problems for elliptic equations of the second order with a spectral parameter and nonlinearity discontinuous with respect to a phase variable are considered. By variational method the theorem on existence the correct solutions for these problems is proved, and the estimates for both a value of the bifurcational parameter and the differential operator are obtained.
Keywords: elliptic boundary problems, spectral parameter, discontinuous nonlinearity, variational method
Mots-clés : correct solutions.
@article{JSFU_2012_5_3_a13,
     author = {Dmitry K. Potapov},
     title = {On elliptic equations with spectral parameter and discontinuous nonlinearity},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {417--421},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a13/}
}
TY  - JOUR
AU  - Dmitry K. Potapov
TI  - On elliptic equations with spectral parameter and discontinuous nonlinearity
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 417
EP  - 421
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a13/
LA  - ru
ID  - JSFU_2012_5_3_a13
ER  - 
%0 Journal Article
%A Dmitry K. Potapov
%T On elliptic equations with spectral parameter and discontinuous nonlinearity
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 417-421
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a13/
%G ru
%F JSFU_2012_5_3_a13
Dmitry K. Potapov. On elliptic equations with spectral parameter and discontinuous nonlinearity. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 417-421. http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a13/

[1] V. N. Pavlenko, D. K. Potapov, “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii s razryvnymi operatorami”, Sib. matem. zhurn., 42:4 (2001), 911–919 | MR | Zbl

[2] D. K. Potapov, “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami v kriticheskom sluchae”, Vestn. S.-Peterb. un-ta, Ser. 10. Prikladnaya matematika. Informatika. Protsessy upravleniya, 2004, no. 4, 125–132

[3] V. N. Pavlenko, D. K. Potapov, “Approksimatsiya kraevykh zadach ellipticheskogo tipa so spektralnym parametrom i razryvnoi nelineinostyu”, Izvestiya vuzov. Matematika, 2005, no. 4, 49–55 | MR | Zbl

[4] D. K. Potapov, “Ustoichivost osnovnykh kraevykh zadach ellipticheskogo tipa so spektralnym parametrom i razryvnoi nelineinostyu v koertsitivnom sluchae”, Izvestiya RAEN. Ser. MMMIU, 9:1–2 (2005), 159–165

[5] D. K. Potapov, “Ob odnoi otsenke sverkhu velichiny bifurkatsionnogo parametra v zadachakh na sobstvennye znacheniya dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Differents. uravneniya, 44:5 (2008), 715–716 | MR | Zbl

[6] D. K. Potapov, “Otsenki differentsialnogo operatora v zadachakh so spektralnym parametrom dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2010, no. 5(21), 268–271

[7] M. A. Lavrentev, B. V. Shabat, Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, M., 1973 | MR

[8] M. S. Agranovich, “Spektralnye zadachi v lipshitsevykh oblastyakh”, Sovrem. mat. Fundam. napravl., 39, 2011, 11–35 | MR

[9] M. G. Lepchinskii, V. N. Pavlenko, “Pravilnye resheniya ellipticheskikh kraevykh zadach s razryvnymi nelineinostyami”, Algebra i analiz, 17:3 (2005), 124–138 | MR | Zbl

[10] M. A. Krasnoselskii, A. V. Pokrovskii, “Pravilnye resheniya uravnenii s razryvnymi nelineinostyami”, Dokl. AN SSSR, 226:3 (1976), 506–509 | MR

[11] M. A. Krasnoselskii, A. V. Pokrovskii, “Ob ellipticheskikh uravneniyakh s razryvnymi nelineinostyami”, Dokl. RAN, 342:6 (1995), 731–734 | MR