Decomposition of transvection in elementary group
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 388-392
Voir la notice de l'article provenant de la source Math-Net.Ru
The elementary net (elementary carpet) $\sigma=(\sigma_{ij})$ an order 3 of additive subgroups commutative ring is considered, the derivative net $\omega$ connected with it, elementary group $E(\sigma)$ and net group $G(\omega)$. It is proved that a elementary transvection $t_{ij}(\alpha)$ from $E(\sigma)$ is a product of a matrix from group $\langle t_{ij}(\sigma_{ij}),t_{ji}(\sigma_{ji})\rangle$ and matrixes from $G(\omega)$.
Mots-clés :
net, net group, transvection.
Keywords: carpet, elementary nets, carpet group, elementary group
Keywords: carpet, elementary nets, carpet group, elementary group
@article{JSFU_2012_5_3_a10,
author = {Vladimir A. Koibaev},
title = {Decomposition of transvection in elementary group},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {388--392},
publisher = {mathdoc},
volume = {5},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a10/}
}
TY - JOUR AU - Vladimir A. Koibaev TI - Decomposition of transvection in elementary group JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2012 SP - 388 EP - 392 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a10/ LA - ru ID - JSFU_2012_5_3_a10 ER -
Vladimir A. Koibaev. Decomposition of transvection in elementary group. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 388-392. http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a10/