Control problems for equations with a~spectral parameter and a~discontinuous operator under perturbations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 2, pp. 239-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

In Banach spaces control problems for systems with a spectral parameter, an external perturbation and a discontinuous operator are considered. The theorem on resolvability for investigated problems is proved. General results are applied to control problems for distributed systems of the elliptic type with a spectral parameter and discontinuous nonlinearity under an external perturbation. Propositions on resolvability for such problems are established. Control problem with a perturbation in the Gol'dshtik mathematical model for separated flows of incompressible fluid is considered as an application.
Keywords: control problems, spectral parameter, discontinuous operator, variational method, Gol'dshtik model.
Mots-clés : external perturbation, “perturbation–control–state”
@article{JSFU_2012_5_2_a9,
     author = {Dmitry K. Potapov},
     title = {Control problems for equations with a~spectral parameter and a~discontinuous operator under perturbations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {239--245},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a9/}
}
TY  - JOUR
AU  - Dmitry K. Potapov
TI  - Control problems for equations with a~spectral parameter and a~discontinuous operator under perturbations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 239
EP  - 245
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a9/
LA  - ru
ID  - JSFU_2012_5_2_a9
ER  - 
%0 Journal Article
%A Dmitry K. Potapov
%T Control problems for equations with a~spectral parameter and a~discontinuous operator under perturbations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 239-245
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a9/
%G ru
%F JSFU_2012_5_2_a9
Dmitry K. Potapov. Control problems for equations with a~spectral parameter and a~discontinuous operator under perturbations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 2, pp. 239-245. http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a9/

[1] V. N. Pavlenko, D. K. Potapov, “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii s razryvnymi operatorami”, Sib. matem. zhurn., 42:4 (2001), 911–919 | MR | Zbl

[2] D. K. Potapov, “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami v kriticheskom sluchae”, Vestn. S.-Peterb. un-ta. Ser. 10. Prikladnaya matematika. Informatika. Protsessy upravleniya, 2004, no. 4, 125–132

[3] D. K. Potapov, “Spectral problems for equations with discontinuous monotone operators”, J. Math. Sciences, 144:4 (2007), 4232–4233 | DOI | MR | Zbl

[4] D. K. Potapov, Zadachi so spektralnym parametrom i razryvnoi nelineinostyu, Izd-vo IBP, SPb., 2008

[5] D. K. Potapov, “Otsenka bifurkatsionnogo parametra v spektralnykh zadachakh dlya uravnenii s razryvnymi operatorami”, Ufimsk. matem. zhurn., 3:1 (2011), 43–46 | Zbl

[6] D. K. Potapov, “Upravlenie spektralnymi zadachami dlya uravnenii s razryvnymi operatorami”, Trudy IMM UrO RAN, 17, no. 1, 2011, 190–200

[7] Zh. L. Lions, Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987 | MR

[8] V. N. Pavlenko, “Variatsionnyi metod dlya uravnenii s razryvnymi operatorami”, Vestn. Chelyab. gos. un-ta. Ser. 3. Matematika. Mekhanika, 1994, no. 1(2), 87–95 | MR | Zbl

[9] D. K. Potapov, “O strukture mnozhestva sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa vysokogo poryadka s razryvnymi nelineinostyami”, Differents. uravneniya, 46:1 (2010), 150–152 | MR | Zbl

[10] M. A. Goldshtik, “Matematicheskaya model otryvnykh techenii neszhimaemoi zhidkosti”, Dokl. AN SSSR, 147:6 (1962), 1310–1313

[11] M. A. Lavrentev, Variatsionnyi metod v kraevykh zadachakh dlya sistem uravnenii ellipticheskogo tipa, Izd-vo AN SSSR, M., 1962 | MR

[12] I. I. Vainshtein, V. K. Yurovskii, “Ob odnoi zadache sopryazheniya vikhrevykh techenii idealnoi zhidkosti”, Zhurn. prikl. mekh. i tekhn. fiz., 1976, no. 5, 98–100

[13] O. V. Titov, “Variatsionnyi podkhod k ploskim zadacham o skleike potentsialnogo i vikhrevogo techeniya”, Prikl. matem. i mekh., 41:2 (1977), 370–372

[14] D. K. Potapov, “Matematicheskaya model otryvnykh techenii neszhimaemoi zhidkosti”, Izvestiya RAEN. Ser. MMMIU, 8:3–4 (2004), 163–170

[15] D. K. Potapov, “Nepreryvnye approksimatsii zadachi Goldshtika”, Matem. zametki, 87:2 (2010), 262–266 | MR | Zbl

[16] I. I. Vainshtein, “Dualnaya zadacha k zadache M. A. Goldshtika s proizvolnoi zavikhrennostyu”, Zhurn. SFU. Ser. matem. fiz., 3:4 (2010), 500–506

[17] I. I. Vainshtein, “Reshenie dvukh dualnykh zadach o skleike vikhrevykh i potentsialnykh techenii variatsionnym metodom M. A. Goldshtika”, Zhurn. SFU. Ser. matem. fiz., 4:3 (2011), 320–331

[18] D. K. Potapov, “Bifurkatsionnye zadachi dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Matem. zametki, 90:2 (2011), 280–284 | Zbl