Elastic waves in piezoelectric layeres structures
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 2, pp. 164-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

Relations used for calculation of the layered piezoelectric structures parameters, including the influence of the uniform dc electric field have been obtained. Computer simulations of acoustic wave propagation in the $AlN$/diamond, $BGO$/fused quartz, $LGS$/fused quartz layered structures have been fulfilled for the main crystalline cuts. Dispersion dependences of the phase velocities, electromachanical coupling coefficients, the power flow angles as a function of the $h\times f$ product and the anisotropy of the wave propagation parameters have been presented. Identification of acoustic modes has been completed. Estimations of the acoustic modes hybridization have been obtained. Crystalline cuts and directions with optimal combination of acoustic properties such as high phase velocity and $EMCC$, the minimal $PFA$ etc. have been specified.
Keywords: Love wave, Rayleigh wave
Mots-clés : Sezawa wave, langasite.
@article{JSFU_2012_5_2_a2,
     author = {Olga P. Zolotova and Sergey I. Burkov and Boris P. Sorokin and Arsenii V. Telichko},
     title = {Elastic waves in piezoelectric layeres structures},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {164--186},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a2/}
}
TY  - JOUR
AU  - Olga P. Zolotova
AU  - Sergey I. Burkov
AU  - Boris P. Sorokin
AU  - Arsenii V. Telichko
TI  - Elastic waves in piezoelectric layeres structures
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 164
EP  - 186
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a2/
LA  - ru
ID  - JSFU_2012_5_2_a2
ER  - 
%0 Journal Article
%A Olga P. Zolotova
%A Sergey I. Burkov
%A Boris P. Sorokin
%A Arsenii V. Telichko
%T Elastic waves in piezoelectric layeres structures
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 164-186
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a2/
%G ru
%F JSFU_2012_5_2_a2
Olga P. Zolotova; Sergey I. Burkov; Boris P. Sorokin; Arsenii V. Telichko. Elastic waves in piezoelectric layeres structures. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 2, pp. 164-186. http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a2/

[1] D. P. Morgan, “A history of surface acoustic wave devices”, Int. J. of High Speed Electronics and Systems, 10:3 (2000), 553–602

[2] B. Drafts, “Acoustic wave technology sensors”, IEEE Trans. on Microwave Theory and Techniques, 49:4 (2001), 795–802 | DOI

[3] M. Kadota, T. Yoneda, K. Fujimoto, T. Nakao, E. Takata, “Very small-sized resonator $IF$ filter using shear horizontal wave on quartz substrate”, Proc. of 2001 IEEE Ultrasonics Symp. (Atlanta, USA), 2001, 65–68

[4] G. Sehra, M. Cole, J. W. Gardner, “Miniature taste sensing system based on dual $SH$-$SAW$ sensor device: an electronic tongue”, Sensors and Actuators B: Chemical, 103:1–2 (2004), 233–239 | DOI

[5] N. M. Ushakov, K. V. Zapsis, I. D. Kosobudskii, “Conductivity and dielectric properties of iron containing nanocomposites”, Tech. Phys. Lett., 29 (2003), 936–937 | DOI

[6] I. E. Kuznetsova, B. D. Zaitsev, A. S. Kuznetsova, “Acoustic waves in structure ‘`piezoelectric plate-polymeric nanocomposite film’ ”, Ultrasonics, 48 (2008), 587–590 | DOI

[7] T. Uemura, S. Fujii, H. Kitabayasi et al., “Low loss diamond $SAW$ devices by small grain size poly-crystalline diamond”, Proc. IEEE Ultrasonics Symp. (Munich, Germany), 2002, 431–434

[8] F. Bénédic, M. B. Assouar, P. Kirsch et al., “Very high frequency $SAW$ devices based on nanocrystalline diamond and aluminum nitride layered structure achieved using e-beam lithography”, Diamond and Related Materials, 17 (2008), 804–808 | DOI

[9] S. Fujii, S. Shikata, T. Uemura et al., “Effect of crystalline quality of diamond film to the propagation loss of surface acoustic wave devices”, IEEE Trans. on Ultrason. Ferroel. and Freq. Control, 52:10 (2005), 1817–1822 | DOI

[10] F. Bénédic, M. B. Assouar, F. Mohasse et al., “Surface acoustic wave devices based on nanocrystalline diamond and aluminium nitride”, Diamond and Related Materials, 13 (2004), 347–353 | DOI

[11] H. Nakahata, K. Higaki, S. Fujii et al., “$SAW$ devices on diamond”, Proc. IEEE Ultrasonics Symp. (Seattle, USA), v. 1, 1995, 361–370

[12] K. Higaki, H. Nakahata, H. Kitabayashi et al., “High power durability of diamond surface acoustic wave filter”, IEEE Trans. on Ultrason. Ferroel. and Freq. Control, 44:6 (1997), 1395–1400 | DOI

[13] Y. Wang, K. Hashimoto, T. Omori, M. Yamaguchi, “Change in piezoelectric boundary acoustic wave characteristics with overlay and metal grating materials”, IEEE Trans. on Ultrason. Ferroel. and Freq. Control, 57:1 (2010), 16–22 | DOI

[14] K. S. Aleksandrov, B. P. Sorokin, S. I. Burkov, Effektivnye pezoelektricheskie kristally dlya akustoelektroniki, pezotekhniki i sensorov, v. 2, Izd-vo SO RAN, Novosibirsk, 2008, 429 pp.

[15] K. S. Aleksandrov, B. P. Sorokin, P. P. Turchin et al., “Effects of static electric field and of mechanic pressure on surface acoustic waves propagation in $La_3Ga_5SiO_{14}$ piezoelectric single crystals”, Proc. of 1995 IEEE Ultrason. Symp. (Seattle, USA), v. 1, 1995, 409–412

[16] B. P. Sorokin, P. P. Turchin, S. I. Burkov, “Influence of static electric field, mechanic pressure and temperature on the propagation of acoustic waves in $La_3Ga_5SiO_{14}$ piezoelectric single crystals”, Proc. of 1996 IEEE Int. Freq. Contr. Symp. (Honolulu, USA), 1996, 161–169 | DOI

[17] Yu. V. Gulyaev, V. P. Plesskii, “Rasprostranenie poverkhnostnykh akusticheskikh voln v periodicheskikh strukturakh”, Uspekhi fiz. nauk, 157:1 (1989), 85–127

[18] K. S. Aleksandrov, B. P. Sorokin, S. I. Burkov, Effektivnye pezoelektricheskie kristally dlya akustoelektroniki, pezotekhniki i sensorov, v. 1, Izd-vo SO RAN, Novosibirsk, 2007, 501 pp.

[19] C. Lardat, C. Maerfeld, P. Tournois, “Theory and performance of acoustical dispersive surface wave delay lines”, Proc. IEEE, 59 (1971), 355–368 | DOI

[20] L. A. Ivanov, “Otyskanie poverkhnostnoi akusticheskoi volny v mnogosloinoi sisteme iz pezoelektrikov”, Kristallografiya, 36:4 (1991), 834–841

[21] J. Liu, Y. Wang, B. Wang, “Propagation of shear horizontal surface waves in a layered piezoelectric half-space with an imperfect interface”, IEEE Trans. on Ultrason. Ferroel. and Freq. Control, 57:8 (2010), 1875–1879 | DOI

[22] J. Liu, S. He, “Properties of Love waves in layered piezoelectric structures”, Int. J. of Solids and Structures, 47 (2010), 169–174 | DOI | Zbl

[23] H. J. McScimin, P. Andreatch, P. Glynn, “The elastic stiffness moduli of diamond”, J. Appl. Phys., 43 (1972), 985–987 | DOI

[24] A. V. Sotnikov, H. Schmidt, M. Weihnacht et al., “Elastic and piezoelectric properties of $AlN$ and $LiAlO_2$ single crystals”, IEEE Trans. on Ultrason. Ferroel. and Freq. Control, 57 (2010), 808–811 | DOI

[25] S. Wu, R. Ro, Z.-X. Lin, M.-S. Lee, “Rayleigh surface acoustic wave modes of interdigital transducer/(100)$AlN$/(111)diamond”, J. Appl. Phys., 104 (2008), 064919 | DOI

[26] S. Wu, R. Ro, Z.-X. Lin, M.-S. Lee, “High velocity shear horizontal surface acoustic wave modes of interdigital transducer/(100)$AlN$/(111)diamond”, Appl. Phys. Lett., 94 (2009), 092903 | DOI

[27] I. E. Kuznetsova, B. D. Zaitsev, A. A. Teplykh, S. G. Joshi, A. S. Kuznetsova, “The power flow angle of acoustic waves in thin piezoelectric plates”, IEEE Trans. on Ultrason. Ferroel. and Freq. Control, 55:9 (2008), 1984–1991 | DOI

[28] E. Delesan, D. Ruaie, Uprugie volny v tverdykh telakh. Primeneniya dlya obrabotki signalov, Nauka, M., 1982, 424 pp.

[29] J. Zelenka, “Electromechanical properties of bismuth germanium oxide ($Bi_{12}GeO_{20}$)”, Cz. J. Phys. B, 28:2 (1978), 165–169 | DOI

[30] K. S. Aleksandrov, V. S. Bondarenko, M. P. Zaitseva i dr., “Kompleksnye issledovaniya nelineinykh elektromekhanicheskikh svoistv kristallov so strukturoi sillenita”, FTT, 26:12 (1984), 3603–3610

[31] K. S. Aleksandrov, B. P. Sorokin, P. P. Turchin, S. I. Burkov, “Nelininye elektromekhanicheskie svoistva i rasprostranenie akusticheskikh voln pod deistviem vneshnikh staticheskikh polei v pezoelektrike $La_3Ga_5SiO_{14}$”, Izv. RAN. Ser. fiz., 60:10 (1996), 103–105

[32] B. P. Sorokin, P. P. Turchin, D. A. Glushkov, “Uprugaya nelineinost i osobennosti rasprostraneniya ob'emnykh akusticheskikh voln v usloviyakh deistviya odnorodnykh mekhanicheskikh napryazhenii v monokristalle $La_3Ga_5SiO_{14}$”, FTT, 36:10 (1994), 2907–2916

[33] I. E. Kuznetsova, B. D. Zaitsev, A. A. Teplykh, I. A. Borodina, “Hybridization of acoustic waves in piezoelectric plates”, Acoustical Physics, 53:1 (2007), 64–69 | DOI

[34] S. I. Burkov, O. P. Zolotova, B. P. Sorokin, K. S. Aleksandrov, “Effect of external electrical field on characteristics of a Lamb wave in a piezoelectric plate”, Acoustical Physics, 56:5 (2010), 644–650 | DOI

[35] S. I. Burkov, O. P. Zolotova, B. P. Sorokin, “Influence of the external electric field on propagation of lamb waves in piezoelectric plates”, IEEE Trans. on Ultrason. Ferroel. and Freq. Control, 58:1 (2011), 239–243 | DOI

[36] I. E. Kuznetsova, B. D. Zaitsev, A. A. Teplykh, S. G. Dzhoshi, “Vliyanie elektricheskikh granichnykh uslovii na ugol mezhdu fazovoi skorostyu i skorostyu perenosa energii $SH_0$ voln v tonkikh pezoelektricheskikh plastinakh”, Pisma v ZhTF, 32:23 (2006), 73–79

[37] B. D. Zaitsev, I. E. Kuznetsova, A. A. Teplykh, S. G. Joshi, “Theoretical and experimental investigation of the influence of electrical shorting of the surface on $PFA$ of $SH_0$ waves in thin piezoelectric plates” (Vancouver, BC, Canada), Proc. of IEEE Ultrason. Symp., 2006, 189