Projective geometry and phenomenological symmetry
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 1, pp. 82-90
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper it is investigated the physical structure of the maximal range in a projective space $(PV)^s$ over the algebra of hypercomplex numbers $V$. It is proved that this structure is formed by the group of projective transforms of the space $(PV)^s$.
Keywords:
projective space, group of projective transforms.
@article{JSFU_2012_5_1_a8,
author = {Vladimir A. Kyrov},
title = {Projective geometry and phenomenological symmetry},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {82--90},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a8/}
}
TY - JOUR AU - Vladimir A. Kyrov TI - Projective geometry and phenomenological symmetry JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2012 SP - 82 EP - 90 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a8/ LA - ru ID - JSFU_2012_5_1_a8 ER -
Vladimir A. Kyrov. Projective geometry and phenomenological symmetry. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 1, pp. 82-90. http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a8/