On the problem of identification of two lower coefficients and the coefficient by the derivative with respect to time in the parabolic equation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 1, pp. 63-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theorem of existence and uniqueness of classical solution of identification problem of two lower coefficients and the coefficient by the derivative with respect to time in the class of smooth bounded functions is proved. In the proof of the existence and uniqueness of the inverse problem solution using the overdetermination conditions, the original inverse problem is reduced to the direct problem for the loaded (containing traces of unknown functions and their derivatives) equation. The investigation of the correctness of the direct problem is obtained by the method of weak approximation.
Mots-clés : identification, parabolic equations
Keywords: inverse problem, equations in partial derivatives, method of weak approximation.
@article{JSFU_2012_5_1_a6,
     author = {Anzhelika V. Datsenko and Svetlana V. Polyntseva},
     title = {On the problem of identification of two lower coefficients and the coefficient by the derivative with respect to time in the parabolic equation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {63--74},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a6/}
}
TY  - JOUR
AU  - Anzhelika V. Datsenko
AU  - Svetlana V. Polyntseva
TI  - On the problem of identification of two lower coefficients and the coefficient by the derivative with respect to time in the parabolic equation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 63
EP  - 74
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a6/
LA  - ru
ID  - JSFU_2012_5_1_a6
ER  - 
%0 Journal Article
%A Anzhelika V. Datsenko
%A Svetlana V. Polyntseva
%T On the problem of identification of two lower coefficients and the coefficient by the derivative with respect to time in the parabolic equation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 63-74
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a6/
%G ru
%F JSFU_2012_5_1_a6
Anzhelika V. Datsenko; Svetlana V. Polyntseva. On the problem of identification of two lower coefficients and the coefficient by the derivative with respect to time in the parabolic equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a6/

[1] Yu. E. Anikonov, B. A. Bubnov, “Suschestvovanie i edinstvennost resheniya obratnoi zadachi dlya parabolicheskogo uravneniya”, Dokl. AN SSSR, 298:4 (1988), 777–779 | MR | Zbl

[2] S. N. Baranov, Yu. Ya. Belov, “O zadache identifikatsii trekh koeffitsientov s neodnorodnymi usloviyami pereopredeleniya”, Vychislitelnye tekhnologii, 8:4 (2003), 92–102

[3] N. Ya. Beznoschenko, “Ob opredelenii koeffitsienta pri mladshem chlene obschego parabolicheskogo uravneniya”, Differentsialnye uravneniya, 12:1 (1976), 175–176 | MR

[4] Yu. Ya. Belov, E. G. Savateev, “Ob odnoi obratnoi zadache dlya parabolicheskogo uravneniya s neizvestnym koeffitsientom pri proizvodnoi po vremeni”, Dokl. AN SSSR, 334:5 (1991), 800–804 | MR

[5] S. V. Polyntseva, “Zadacha identifikatsii koeffitsientov pri proizvodnykh po vremeni i prostranstvennoi peremennoi”, Zhurnal SFU. Matematika i fizika, 1:3 (2008), 308–317

[6] Yu. Ya. Belov, S. V. Polyntseva, “O zadache identifikatsii trekh koeffitsientov mnogomernogo parabolicheskogo uravneniya”, Sovmestnyi vypusk:, Vychislitelnye tekhnologii (Novosibirsk), 9:1 (2004), Vestnik KazNU (Almaty), 42:3 (2004), 273–280

[7] I. V. Frolenkov, E. N. Kriger, “O zadache identifikatsii funktsii istochnika spetsialnogo vida v dvumernom parabolicheskom uravnenii”, Zhurnal SFU. Matematika i fizika, 3:4 (2010), 556–564

[8] Yu. Ya. Belov, S. A. Kantor, Metod slaboi approksimatsii, KrasGU, Krasnoyarsk, 1999

[9] A. M. Ilin, A. S. Kalashnikov, O. A. Oleinik, “Lineinye uravneniya vtorogo poryadka parabolicheskogo tipa”, Uspekhi mat. nauk, 17:3 (1962), 3–146 | MR | Zbl

[10] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1977 | MR