Mathematical model of dynamics of a~cell cycle based on the allometric theory of growth
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 1, pp. 106-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model of dynamics of a cell cycle on the basis of the theory allometric growth is developed. The way of a finding of stationary and periodic points on the basis of the geometrical description of model has been found.
Mots-clés : cell cycle
Keywords: optimality, selection, hybrid automata, polyhedron, cone, stability.
@article{JSFU_2012_5_1_a11,
     author = {Dmitriy V. Petelin and Michael G. Sadovsky},
     title = {Mathematical model of dynamics of a~cell cycle based on the allometric theory of growth},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {106--115},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a11/}
}
TY  - JOUR
AU  - Dmitriy V. Petelin
AU  - Michael G. Sadovsky
TI  - Mathematical model of dynamics of a~cell cycle based on the allometric theory of growth
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 106
EP  - 115
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a11/
LA  - ru
ID  - JSFU_2012_5_1_a11
ER  - 
%0 Journal Article
%A Dmitriy V. Petelin
%A Michael G. Sadovsky
%T Mathematical model of dynamics of a~cell cycle based on the allometric theory of growth
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 106-115
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a11/
%G ru
%F JSFU_2012_5_1_a11
Dmitriy V. Petelin; Michael G. Sadovsky. Mathematical model of dynamics of a~cell cycle based on the allometric theory of growth. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 1, pp. 106-115. http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a11/

[1] E. M. Boczko, T. Gedeon, C. C. Stowers, T. R. Young, “ODE, RDE and SDE models of cell cycle dynamics and clustering in yeast”, Journal of Biological Dynamics, 4:4 (2010), 328–345 | DOI | MR

[2] Zh. Qu, W. R. Mac Lellan, J. N. Weiss, “Dynamics of the Cell Cycle: Checkpoints, Sizers, and Timers”, Biophysical Journal, 85 (2003), 3600–3611 | DOI

[3] J. Clairambault, Ph. Michel, B. Perthame, “A Mathematical Model of the Cell Cycle and Its Circadian Control”, Mathematical modeling of biological systems, Part IV, v. I, Modeling and Simulation in Science, Engineering and Technology, 2007, 239–251

[4] N. W. Trepode, H. A. Armelin, M. Bittner, J. Barrera, M. D. Gubitoso, R. F. Hashimoto, “A robust structural PGN model for control of cell-cycle progression stabilized by negative feedbacks”, EURASIP Journal on Bioinformatics and Systems Biology, 2007 (2007), 8–9 | DOI

[5] M. I. Davidich, E. B. Postnikov, “Bulevskaya model tsikla deleniya kletki drozhzhei, Schizosaccharomyces pombe: dinamika v sluchae normalnykh i vozmuschennykh nachalnykh uslovii”, Matem. biologiya i bioinformatika, 2:2 (2007), 377–386

[6] M. V. Mina, G. A. Klevezal, Rost zhivotnykh, Nauka, M., 1976

[7] A. N. Gorban, “Sistemy s nasledovaniem i effekty otbora”, Evolyutsionnoe modelirovanie i kinetika, Nauka, Novosibirsk, 1992, 40–72 | Zbl

[8] A. N. Gorban, “Selection Theorem for Systems with Inheritance”, Math. Model. Nat. Phenom., 2:4 (2007), 1–45 | DOI | MR

[9] E. M. Shkolnik, “Dinamika kletochnogo tsikla”, Dinamika khimicheskikh i biologicheskikh sistem, Nauka, Novosibirsk, 1989, 230–260

[10] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999