Stable bundles of rank~2 with Chern's classes $c_1=0$, $c_2=2$ on $\mathbb P^3$ and Poncelet hyperquadrics
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 4, pp. 551-555.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we investigate the variety $M(0,2)$ of stable vector bundles of rank 2 on $\mathbb P^3$ with Chern's classes $c_1=0$, $c_2=2$ and give the explicit description of closure of $M(0,2)$ as the intersection of special determinantal locus with uniquely determined Poncelet hyperquadric in $\mathbb P^{20}$.
Keywords: stable bundle
Mots-clés : Poncelet hyperquadric.
@article{JSFU_2011_4_4_a13,
     author = {Sergey A. Tikhomirov},
     title = {Stable bundles of rank~2 with {Chern's} classes $c_1=0$, $c_2=2$ on $\mathbb P^3$ and {Poncelet} hyperquadrics},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {551--555},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_4_a13/}
}
TY  - JOUR
AU  - Sergey A. Tikhomirov
TI  - Stable bundles of rank~2 with Chern's classes $c_1=0$, $c_2=2$ on $\mathbb P^3$ and Poncelet hyperquadrics
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2011
SP  - 551
EP  - 555
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2011_4_4_a13/
LA  - ru
ID  - JSFU_2011_4_4_a13
ER  - 
%0 Journal Article
%A Sergey A. Tikhomirov
%T Stable bundles of rank~2 with Chern's classes $c_1=0$, $c_2=2$ on $\mathbb P^3$ and Poncelet hyperquadrics
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2011
%P 551-555
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2011_4_4_a13/
%G ru
%F JSFU_2011_4_4_a13
Sergey A. Tikhomirov. Stable bundles of rank~2 with Chern's classes $c_1=0$, $c_2=2$ on $\mathbb P^3$ and Poncelet hyperquadrics. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 4, pp. 551-555. http://geodesic.mathdoc.fr/item/JSFU_2011_4_4_a13/

[1] R. Hartshorne, “Stable vector bundles of rank 2 on $\mathbb P_3$”, Math. Ann., 238 (1978), 229–280 | DOI | MR | Zbl

[2] M. S. Narasimhan, G. Trautmann, “Compactification of $M_{\mathbb P_3}(0,2)$ and Poncelet pairs of conics”, Pacific J. Math., 145 (1990), 255–365 | MR | Zbl

[3] M. S. Narasimhan, G. Trautmann, “The Picard group of the compactification of $M_{\mathbb P^3}(0,2)$”, J. Reine Angew. Math., 422 (1991), 21–44 | MR | Zbl

[4] W. Singhof, G. Trautmann, “On the topology of the moduli space $M(0,2)$ of stable bundles of rank 2 on $\mathbb P^3$”, Q. J. Math. Oxf. Ser. (2), 41:163 (1990), 335–358 | DOI | MR | Zbl

[5] M. S. Narasimhan, G. Trautmann, “Compactification of $M(0,2)$”, Vector bundles on algebraic varieties (Bombay, 1984), Stud. Math. Tata Inst. Fundam. Res., 11, 1987, 429–443 | MR | Zbl

[6] W. Fulton, J. Harris, Representation theory, A First Course, Springer, 1991 | MR | Zbl

[7] A. Barut, M. Ronchka, Teoriya predstavlenii grupp i ee prilozheniya, Mir, M., 1980 | Zbl

[8] M. M. Kapranov, “O proizvodnoi kategorii kogerentnykh puchkov na mnogoobraziyakh”, Izvestiya RAN, Cer. matem., 48:1 (1984), 192–202 | MR | Zbl