Integral convergence criterion for the multiple series
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 3, pp. 344-349.

Voir la notice de l'article provenant de la source Math-Net.Ru

We proved an integral convergence criterion for the series, representing the sum of a rational function over the lattice.
Mots-clés : elliptic polynomial, quasi-elliptic polynomial
Keywords: multiple series, Newton polytope.
@article{JSFU_2011_4_3_a7,
     author = {Elena V. Zubchenkova},
     title = {Integral convergence criterion for the multiple series},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {344--349},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a7/}
}
TY  - JOUR
AU  - Elena V. Zubchenkova
TI  - Integral convergence criterion for the multiple series
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2011
SP  - 344
EP  - 349
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a7/
LA  - ru
ID  - JSFU_2011_4_3_a7
ER  - 
%0 Journal Article
%A Elena V. Zubchenkova
%T Integral convergence criterion for the multiple series
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2011
%P 344-349
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a7/
%G ru
%F JSFU_2011_4_3_a7
Elena V. Zubchenkova. Integral convergence criterion for the multiple series. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 3, pp. 344-349. http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a7/

[1] T. O. Ermolaeva, A. K. Tsikh, “Integrirovanie ratsionalnykh funktsii po $\mathbb R^n$ s pomoschyu toricheskikh kompaktifikatsii i mnogomernykh vychetov”, Mat. sb., 187:9 (1996), 45–64 | MR | Zbl

[2] L. R. Volevich, S. G. Gindikin, “Ob odnom klasse gipoellipticheskikh polinomov”, Mat. sb., 75(117):3 (1968), 400–416 | MR | Zbl