Enumeration of $\mathcal D$-invariant ideals of the ring $\mathrm{R_n(K,J)}$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 3, pp. 332-343
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $K$ be a local ring of the main ideal with a nilpotent maximal ideal $J$. The paper is devoted to finished of solution of problem enumeration of ideals of the ring $K$ of $n\times n$ matrices with coefficients of $J$ on the main diagonal and above it.
Keywords:
combinatorial identities, method of coefficients, enumeration of lattice, ring theory.
@article{JSFU_2011_4_3_a6,
author = {Maxim N. Davletshin},
title = {Enumeration of $\mathcal D$-invariant ideals of the ring $\mathrm{R_n(K,J)}$},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {332--343},
publisher = {mathdoc},
volume = {4},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a6/}
}
TY - JOUR
AU - Maxim N. Davletshin
TI - Enumeration of $\mathcal D$-invariant ideals of the ring $\mathrm{R_n(K,J)}$
JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY - 2011
SP - 332
EP - 343
VL - 4
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a6/
LA - ru
ID - JSFU_2011_4_3_a6
ER -
%0 Journal Article
%A Maxim N. Davletshin
%T Enumeration of $\mathcal D$-invariant ideals of the ring $\mathrm{R_n(K,J)}$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2011
%P 332-343
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a6/
%G ru
%F JSFU_2011_4_3_a6
Maxim N. Davletshin. Enumeration of $\mathcal D$-invariant ideals of the ring $\mathrm{R_n(K,J)}$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 3, pp. 332-343. http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a6/