Enumeration of $\mathcal D$-invariant ideals of the ring $\mathrm{R_n(K,J)}$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 3, pp. 332-343

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a local ring of the main ideal with a nilpotent maximal ideal $J$. The paper is devoted to finished of solution of problem enumeration of ideals of the ring $K$ of $n\times n$ matrices with coefficients of $J$ on the main diagonal and above it.
Keywords: combinatorial identities, method of coefficients, enumeration of lattice, ring theory.
@article{JSFU_2011_4_3_a6,
     author = {Maxim N. Davletshin},
     title = {Enumeration of $\mathcal D$-invariant ideals of the ring $\mathrm{R_n(K,J)}$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {332--343},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a6/}
}
TY  - JOUR
AU  - Maxim N. Davletshin
TI  - Enumeration of $\mathcal D$-invariant ideals of the ring $\mathrm{R_n(K,J)}$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2011
SP  - 332
EP  - 343
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a6/
LA  - ru
ID  - JSFU_2011_4_3_a6
ER  - 
%0 Journal Article
%A Maxim N. Davletshin
%T Enumeration of $\mathcal D$-invariant ideals of the ring $\mathrm{R_n(K,J)}$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2011
%P 332-343
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a6/
%G ru
%F JSFU_2011_4_3_a6
Maxim N. Davletshin. Enumeration of $\mathcal D$-invariant ideals of the ring $\mathrm{R_n(K,J)}$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 3, pp. 332-343. http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a6/