Solution of two dual problems of gluing vorter and potential flows by M.\,A.~Goldshtick variational method
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 3, pp. 320-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general problem of motion of incompressible liquid with vortex zones with different constant vorticity is formulated. It is considered the M. A. Goldshtic variational method of the research of dual problems for flows with vortex and potential areas that describe the model of separated flows and the model of ideal liquid motion in a field of Coriolis forces. It is proved the existence of the second nontrivial solution to the M. A. Goldshtick problem.
Keywords: vortex and potential flows, variational method, Green's function, extremum of the functional.
@article{JSFU_2011_4_3_a5,
     author = {Isaak I. Vainshtein},
     title = {Solution of two dual problems of gluing vorter and potential flows by {M.\,A.~Goldshtick} variational method},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {320--331},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a5/}
}
TY  - JOUR
AU  - Isaak I. Vainshtein
TI  - Solution of two dual problems of gluing vorter and potential flows by M.\,A.~Goldshtick variational method
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2011
SP  - 320
EP  - 331
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a5/
LA  - ru
ID  - JSFU_2011_4_3_a5
ER  - 
%0 Journal Article
%A Isaak I. Vainshtein
%T Solution of two dual problems of gluing vorter and potential flows by M.\,A.~Goldshtick variational method
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2011
%P 320-331
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a5/
%G ru
%F JSFU_2011_4_3_a5
Isaak I. Vainshtein. Solution of two dual problems of gluing vorter and potential flows by M.\,A.~Goldshtick variational method. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 3, pp. 320-331. http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a5/

[1] M. A. Goldshtik, Vikhrevye potoki, Nauka, Novosibirsk, 1961

[2] G. K. Bathelor, “A proposal conserning laminar wakes behind bluff bodies at large Reynolds humbers”, J. Fluid Mech., 1:4 (1956), 388–398 | DOI | MR

[3] E. G. Shifrin, Izv. AN SSSR, Mekhanika zhidkosti i gaza, 1976, no. 1, 140–143

[4] M. A. Goldshtik, “Matematicheskaya model otryvnykh techenii neszhimaemoi zhidkosti”, Dokl. AN SSSR, 8:6 (1962), 1310–1313

[5] I. I. Vainshtein, M. A. Goldshtik, “O dvizhenii idealnoi zhidkosti v pole koriolisovykh sil”, Dokl. AN SSSR, 6:6 (1967), 1277–1230

[6] I. I. Vainshtein, O dvizhenii idealnoi zhidkosti s zavikhrennymi zonami, Avtoreferat dissertatsii na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk, Novosibirsk, 1972, 12 pp.

[7] M. A. Lavrentev, B. V. Shabat, Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, Moskva, 1977 | MR

[8] I. I. Vainshtein, V. K. Yurovskii, “Ob odnoi zadache sopryazheniya vikhrevykh techenii”, Zh. prikl. mekh. i tekhn. fiz., 1976, no. 5, 98–100

[9] I. I. Vainshtein, V. K. Yurovskii, “Issledovanie techenii s vikhrevymi zonami”, Osobennosti gidrotekhnicheskogo i meliarativnogo stroitelstva v Sibiri, Krasnoyarsk, 1978, 36–41

[10] O. V. Titov, Prikl. mat. i mekh., 41:2 (1977), 370–372 | Zbl

[11] D. K. Potapov, “Matematicheskaya model otryvnykh techenii neszhimaemoi zhidkosti”, Izvestiya RAEN, Ser. MMMIU, 8:3–4 (2004), 163–170

[12] M. G. Lepchinskii, Suschestvovanie i ustoichivost kraevykh zadach s razryvnymi nelineinostyami, Avtoreferat dissertatsii na soiskanie uchenoi stepeni k. f.-m. n., Ekaterinburg, 2008, 24 pp.

[13] D. K. Potapov, “Nepreryvnye approksimatsii zadachi Goldshtika”, Matem. zametki, 87:2 (2010), 262–266 | MR | Zbl

[14] I. I. Vainshtein, P. S. Litvinov, “Model M. A. Lavrenteva o skleike vikhrevykh i potentsialnykh techenii idealnoi zhidkosti”, Vestnik SibGau, 24:3 (2009), 7–9

[15] P. S. Litvinov, Matematicheskoe modelirovanie dvukhsloinykh potokov v podshipnikakh skolzheniya, separatorakh i techeniyakh po skheme M. A. Lavrenteva, Avtoreferat dissertatsii na soiskanie uchenoi stepeni k. f.-m. n., Krasnoyarsk, 2009, 24 pp.

[16] I. I. Vainshtein, “Dualnaya zadacha k zadache M. A. Goldshtika s proizvolnoi zavikhrennostyu”, Zhurnal Sibirskogo federalnogo universiteta. Matematika i fizika, 3:4 (2010), 500–506

[17] A. B. Shabat, “O dvukh zadachakh na skleivanie”, Dokl. AN SSSR, 150:6 (1963), 1242–1245 | MR

[18] S. N. Antontsev, V. D. Lelyukh, Dinamika sploshnoi sredy, 1969, no. 1, 131–153

[19] P. I. Plotnikov, “O razreshimosti odnogo klassa zadach na skleivanie vikhrevykh i potentsialnykh techenii”, Dinamika sploshnoi sredy, 1969, no. 3, 61–69

[20] I. I. Vainshtein, “Ob odnoi kraevoi zadache vikhrevykh i potentsialnykh techenii idealnoi zhidkosti v osesimmetricheskom sluchae”, Differentsialnye uravneniya, 6:1 (1970), 109–122 | MR