Explicit Carleman formulas for the Dolbeault cohomology in concave domains
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 3, pp. 406-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1999 M. Nacinovich et al. suggested an abstract method for constructing Carleman formulas for the Dolbeault complex. What has been lacking are simple and explicit examples. In this article we present a Carleman formula for Dolbeault cohomology classes given on a part of the boundary whose comlement is concave. As corollary we derive a uniqueness theorem for the Dolbeault cohomology.
Mots-clés : Carleman formula
Keywords: Dolbeault cohomology, analytic continuation.
@article{JSFU_2011_4_3_a15,
     author = {Ivan V. Shestakov},
     title = {Explicit {Carleman} formulas for the {Dolbeault} cohomology in concave domains},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {406--416},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a15/}
}
TY  - JOUR
AU  - Ivan V. Shestakov
TI  - Explicit Carleman formulas for the Dolbeault cohomology in concave domains
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2011
SP  - 406
EP  - 416
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a15/
LA  - ru
ID  - JSFU_2011_4_3_a15
ER  - 
%0 Journal Article
%A Ivan V. Shestakov
%T Explicit Carleman formulas for the Dolbeault cohomology in concave domains
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2011
%P 406-416
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a15/
%G ru
%F JSFU_2011_4_3_a15
Ivan V. Shestakov. Explicit Carleman formulas for the Dolbeault cohomology in concave domains. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 3, pp. 406-416. http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a15/

[1] L. A. Aizenberg, Formuly Karlemana v kompleksnom analize. Pervye prilozheniya, Nauka, Novosibirsk, 1990 | MR

[2] N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie-Verlag, Berlin, 1995 | MR | Zbl

[3] I. V. Shestakov, A. A. Shlapunov, “O zadache Koshi dlya operatorov s in'ektivnym simvolom v prostranstve Lebega $L^2$ v oblasti”, Sib. mat. zhurn., 50:3 (2009), 687–702 | MR | Zbl

[4] A. Andreotti, C. D. Hill, “E. E. Levi convexity and the Hans Lewy problem. Part 1: Reduction to vanishing theorems”, Ann. Scuola Norm. Super. Pisa, 26:3 (1972), 325–363 | MR | Zbl

[5] M. Nacinovich, B.-W. Schulze, N. Tarkhanov, “On Carleman formulas for the Dolbeault cohomology”, Ann. Univ. Ferrara, Sez. VII, Sc. Mat., Suppl., 45 (1999), 253–262 | MR | Zbl

[6] N. Tarkhanov, “An explicit Carleman formula for the Dolbeault cohomology”, Journal SFU, Mathematics and Physics, 3:4 (2010), 450–460

[7] W. Koppelman, “The Cauchy integral for differential forms”, Bull. Amer. Math. Soc., 73:4 (1967), 554–556 | DOI | MR | Zbl

[8] L. A. Aizenberg, Sh. A. Dautov, Differentsialnye formy, ortogonalnye golomorfnym funktsiyam ili formam, i ikh svoistva, Nauka, Novosibirsk, 1975 | MR

[9] M. Hakim, N. Sibony, “Frontière de Shilov et spectre de $A(\bar D)$ pour des domaines faiblement pseudoconvexes”, C. R. Acad. Sci. Paris Sér. A–B, 281:22 (1975), A959–A962 | MR