Modeling for reinforced with isogonal trajectories ring-shaped lamels in polar coordinate system
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 3, pp. 400-405.

Voir la notice de l'article provenant de la source Math-Net.Ru

The resolving differential equations system formulated in terms of movements for axially symmetric reinforced ring-shaped lamels problem is obtained in case of polar coordinate system. A variety of reinforcement structures is reached by isogonal trajectories building for given curves classes. In context of the consistent approach for differential equations system solving the composite construction with a priory specified properties is achieved.
Keywords: reinforcement, structural model
Mots-clés : isogonal trajectories.
@article{JSFU_2011_4_3_a14,
     author = {Natalia A. Feodorova},
     title = {Modeling for reinforced with isogonal trajectories ring-shaped lamels in polar coordinate system},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {400--405},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a14/}
}
TY  - JOUR
AU  - Natalia A. Feodorova
TI  - Modeling for reinforced with isogonal trajectories ring-shaped lamels in polar coordinate system
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2011
SP  - 400
EP  - 405
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a14/
LA  - ru
ID  - JSFU_2011_4_3_a14
ER  - 
%0 Journal Article
%A Natalia A. Feodorova
%T Modeling for reinforced with isogonal trajectories ring-shaped lamels in polar coordinate system
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2011
%P 400-405
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a14/
%G ru
%F JSFU_2011_4_3_a14
Natalia A. Feodorova. Modeling for reinforced with isogonal trajectories ring-shaped lamels in polar coordinate system. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 3, pp. 400-405. http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a14/

[1] Yu. V. Nemirovskii, N. A. Fedorova, Matematicheskoe modelirovanie ploskikh konstruktsii iz armirovannykh voloknistykh materialov, SFU, Krasnoyarsk, 2010

[2] Yu. V. Nemirovskii, N. A. Fedorova, “Armirovanie ploskikh konstruktsii po krivolineinym ortogonalnym traektoriyam”, Vestn. Sam. gos. tekhn. un-ta, Ser. fiz.-mat. nauk (Samara), 2010, no. 5(21), 96–104

[3] A. P. Yankovskii, “Ravnonapryazhennoe armirovanie koltsevykh izgibaemykh metallokompozitnykh plastin, rabotayuschikh v usloviyakh ustanovivsheisya polzuchesti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauk (Samara), 2010, no. 5(21), 42–55

[4] I. T. Vokhmyanin, Yu. V. Nemirovskii, “Osobennosti prodolno-poperechnogo izgiba trekhsloinykh koltsevykh plastin s nesimmetrichnymi strukturami armirovaniya”, Kraevye zadachi i matematicheskie modeli, Trudy 8-i Vserossiiskoi konferentsii, v. 1, Novokuznetsk, 2006, 25–31

[5] Yu. V. Nemirovsky, “On the elastic behavior of the rein-forced layer”, Int. J. Mech. Sci., 12 (1970), 898–903 | DOI

[6] Dzh. Ortega, U. Pul, Vvedenie v chislennye metody resheniya differentsialnykh uravnenii, Nauka, M., 1986 | MR

[7] V. V. Stepanov, Kurs differentsialnykh uravnenii, GIT-TL, M., 1953