Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2011_4_2_a12, author = {Anna G. Petrova}, title = {On the initial-boundary problem for thermocapillary motion of an emulsion in space}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {249--264}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a12/} }
TY - JOUR AU - Anna G. Petrova TI - On the initial-boundary problem for thermocapillary motion of an emulsion in space JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2011 SP - 249 EP - 264 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a12/ LA - ru ID - JSFU_2011_4_2_a12 ER -
%0 Journal Article %A Anna G. Petrova %T On the initial-boundary problem for thermocapillary motion of an emulsion in space %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2011 %P 249-264 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a12/ %G ru %F JSFU_2011_4_2_a12
Anna G. Petrova. On the initial-boundary problem for thermocapillary motion of an emulsion in space. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 2, pp. 249-264. http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a12/
[1] V. V. Pukhnachov, O. V. Voinov, “Mathematical model of motion of emulsion under effect of thermocapillary forces and microacceleration”, Abstracts of Ninth European Symposium on Gravity Dependent Phenomena in Phisical Sciences, Berlin, 1995, 32–33
[2] V. V. Pukhnachov, O. V. Voinov, A. G. Petrova, E. N. Zhuravleva, O. A. Gudz, “Dynamics, stability and solidification of emulsion under the action of thermocapillary forces and microacceleration. Interfacial Fluid Dynamics and Transport Processes”, Lecture Notes on Physics, 628, Springer, 2003, 325–354 | MR | Zbl
[3] A. G. Petrova, “Zadacha neprotekaniya dlya odnomernogo dvizheniya emulsii”, SibZhim., 10:3(31) (2007), 128–137 | MR
[4] A. G. Petrova, “O nachalno-kraevoi zadache dlya odnomernogo dvizheniya emulsii v pole mikrouskorenii i termokapillyarnykh sil”, SibZhim, 12:2(38) (2009), 111–119 | MR
[5] A. I. Volpert, A. I. Khudyaev, “O zadache Koshi dlya sostavnykh sistem nelineinykh differentsialnykh uravnenii”, Mat. sb., 87(129):4 (1972), 27–37 | MR
[6] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, M., 1967
[7] V. A. Solonnikov, “O differentsialnykh svoistvakh reshenii pervoi kraevoi zadachi dlya nestatsionarnoi sistemy uravnenii Nave–Stoksa”, Tr. MIAN SSSR, 73, 1964, 221–291 | MR | Zbl
[8] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Novosibirsk, 1983 | MR
[9] O. A. Ladyzhenskaya, V. A. Solonnikov, “Ob odnoznachnoi razreshimosti nachalno-kraevoi zadachi dlya vyazkikh neszhimaemykh neodnorodnykh zhidkostei”, Zapiski nauchnogo seminara LOMI AN SSSR, 52, 1975, 52–109 | MR | Zbl
[10] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, M., 1962