On the initial-boundary problem for thermocapillary motion of an emulsion in space
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 2, pp. 249-264
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to the study of the initial-boundary problem for thermocapillary motion of an emulsion in closed bounded domain with sufficiently smooth boundary in the absence of gravity. With the use of Tikhonov–Shauder fixed point theorem the local in time solvability to the problem with zero mean volume velocity of the mixture and zero heat flux on the boundary is proved.
Mots-clés :
thermocapillary motion, emulsion
Keywords: initial-boundary problem, existence and uniqueness of solution.
Keywords: initial-boundary problem, existence and uniqueness of solution.
@article{JSFU_2011_4_2_a12,
author = {Anna G. Petrova},
title = {On the initial-boundary problem for thermocapillary motion of an emulsion in space},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {249--264},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a12/}
}
TY - JOUR AU - Anna G. Petrova TI - On the initial-boundary problem for thermocapillary motion of an emulsion in space JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2011 SP - 249 EP - 264 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a12/ LA - ru ID - JSFU_2011_4_2_a12 ER -
%0 Journal Article %A Anna G. Petrova %T On the initial-boundary problem for thermocapillary motion of an emulsion in space %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2011 %P 249-264 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a12/ %G ru %F JSFU_2011_4_2_a12
Anna G. Petrova. On the initial-boundary problem for thermocapillary motion of an emulsion in space. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 2, pp. 249-264. http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a12/