On the initial-boundary problem for thermocapillary motion of an emulsion in space
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 2, pp. 249-264.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of the initial-boundary problem for thermocapillary motion of an emulsion in closed bounded domain with sufficiently smooth boundary in the absence of gravity. With the use of Tikhonov–Shauder fixed point theorem the local in time solvability to the problem with zero mean volume velocity of the mixture and zero heat flux on the boundary is proved.
Mots-clés : thermocapillary motion, emulsion
Keywords: initial-boundary problem, existence and uniqueness of solution.
@article{JSFU_2011_4_2_a12,
     author = {Anna G. Petrova},
     title = {On the initial-boundary problem for thermocapillary motion of an emulsion in space},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {249--264},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a12/}
}
TY  - JOUR
AU  - Anna G. Petrova
TI  - On the initial-boundary problem for thermocapillary motion of an emulsion in space
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2011
SP  - 249
EP  - 264
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a12/
LA  - ru
ID  - JSFU_2011_4_2_a12
ER  - 
%0 Journal Article
%A Anna G. Petrova
%T On the initial-boundary problem for thermocapillary motion of an emulsion in space
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2011
%P 249-264
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a12/
%G ru
%F JSFU_2011_4_2_a12
Anna G. Petrova. On the initial-boundary problem for thermocapillary motion of an emulsion in space. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 2, pp. 249-264. http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a12/

[1] V. V. Pukhnachov, O. V. Voinov, “Mathematical model of motion of emulsion under effect of thermocapillary forces and microacceleration”, Abstracts of Ninth European Symposium on Gravity Dependent Phenomena in Phisical Sciences, Berlin, 1995, 32–33

[2] V. V. Pukhnachov, O. V. Voinov, A. G. Petrova, E. N. Zhuravleva, O. A. Gudz, “Dynamics, stability and solidification of emulsion under the action of thermocapillary forces and microacceleration. Interfacial Fluid Dynamics and Transport Processes”, Lecture Notes on Physics, 628, Springer, 2003, 325–354 | MR | Zbl

[3] A. G. Petrova, “Zadacha neprotekaniya dlya odnomernogo dvizheniya emulsii”, SibZhim., 10:3(31) (2007), 128–137 | MR

[4] A. G. Petrova, “O nachalno-kraevoi zadache dlya odnomernogo dvizheniya emulsii v pole mikrouskorenii i termokapillyarnykh sil”, SibZhim, 12:2(38) (2009), 111–119 | MR

[5] A. I. Volpert, A. I. Khudyaev, “O zadache Koshi dlya sostavnykh sistem nelineinykh differentsialnykh uravnenii”, Mat. sb., 87(129):4 (1972), 27–37 | MR

[6] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, M., 1967

[7] V. A. Solonnikov, “O differentsialnykh svoistvakh reshenii pervoi kraevoi zadachi dlya nestatsionarnoi sistemy uravnenii Nave–Stoksa”, Tr. MIAN SSSR, 73, 1964, 221–291 | MR | Zbl

[8] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Novosibirsk, 1983 | MR

[9] O. A. Ladyzhenskaya, V. A. Solonnikov, “Ob odnoznachnoi razreshimosti nachalno-kraevoi zadachi dlya vyazkikh neszhimaemykh neodnorodnykh zhidkostei”, Zapiski nauchnogo seminara LOMI AN SSSR, 52, 1975, 52–109 | MR | Zbl

[10] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, M., 1962