Parallel algorithm explicit Euler method with accuracy control
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 1, pp. 70-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

Parallel algorithm explicit Euler method with accuracy control for numerical solving of Cauchy problem for differential equation systems is considered. Parallel implementation of the algorithm is written in C and MPI- functions. The numerical results obtained are presented.
Keywords: explicit method, parallel algorithm, local error, accuracy control, clusters.
@article{JSFU_2011_4_1_a7,
     author = {Gennadiy V. Vashchenko and Evgeniy A. Novikov},
     title = {Parallel algorithm explicit {Euler} method with accuracy control},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {70--76},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a7/}
}
TY  - JOUR
AU  - Gennadiy V. Vashchenko
AU  - Evgeniy A. Novikov
TI  - Parallel algorithm explicit Euler method with accuracy control
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2011
SP  - 70
EP  - 76
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a7/
LA  - ru
ID  - JSFU_2011_4_1_a7
ER  - 
%0 Journal Article
%A Gennadiy V. Vashchenko
%A Evgeniy A. Novikov
%T Parallel algorithm explicit Euler method with accuracy control
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2011
%P 70-76
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a7/
%G ru
%F JSFU_2011_4_1_a7
Gennadiy V. Vashchenko; Evgeniy A. Novikov. Parallel algorithm explicit Euler method with accuracy control. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 1, pp. 70-76. http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a7/

[1] E. A. Novikov, “Algoritm integrirovaniya peremennoi struktury dlya resheniya zhestkikh zadach na osnove yavnogo i L-ustoichivogo metodov”, Vestnik SibGAU, 1:18 (2008), 75–78

[2] E. A. Novikov, Yavnye metody dlya zhestkikh sistem, Nauka, Novosibirsk, 1997

[3] E. Khairer, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[4] G. V. Vaschenko, E. A. Novikov, “Parallelnaya realizatsiya yavnykh metodov tipa Runge-Kutty”, Vestnik KrasGAU, 2010, no. 2, 14–18

[5] V. V. Voevodin, Vl. V. Voevodin, Parallelnye vychisleniya, BKhV, SPb., 2002

[6] G. V. Demidenko, V. A. Likhoshvai, T. V. Kotova, Yu. E. Khropova, “Ob odnom klasse sistem differentsialnykh uravnenii i ob uravneniyakh s zapazdyvayuschim argumentom”, Sib. matem. zhurn., 47:1 (2006), 58–68 | MR | Zbl

[7] S. V. Isaev, A. V. Malyshev, V. V. Shaidurov, “Razvitie Krasnoyarskogo tsentra parallelnykh vychislenii”, Vychislitelnye tekhnologii, 11 (2006), 28–33