The criterion of asymptotic stability of a~multidimensional differece equation with the constant coefficiens
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 1, pp. 112-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is obtained the nessessary condition of the stability of a homogeneous Cauchy problem for a multidimensional difference operator and the criterion of its asymptotic stability in terms connecting with the ameoba of an algebraic hypersurface.
Keywords: Cauchy problem, multidimensional difference operator
Mots-clés : ameoba of algebraic hypersurface.
@article{JSFU_2011_4_1_a11,
     author = {Evgeny K. Leinartas},
     title = {The criterion of asymptotic stability of a~multidimensional differece equation with the constant coefficiens},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {112--117},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a11/}
}
TY  - JOUR
AU  - Evgeny K. Leinartas
TI  - The criterion of asymptotic stability of a~multidimensional differece equation with the constant coefficiens
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2011
SP  - 112
EP  - 117
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a11/
LA  - ru
ID  - JSFU_2011_4_1_a11
ER  - 
%0 Journal Article
%A Evgeny K. Leinartas
%T The criterion of asymptotic stability of a~multidimensional differece equation with the constant coefficiens
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2011
%P 112-117
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a11/
%G ru
%F JSFU_2011_4_1_a11
Evgeny K. Leinartas. The criterion of asymptotic stability of a~multidimensional differece equation with the constant coefficiens. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 1, pp. 112-117. http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a11/

[1] M. Bousquet-Mélou, M. Petkovšek, “Linear recurrences with constant coefficients: the multivariate case”, Discrete Mathematics, 225:5 (2000), 51–75 | DOI | MR | Zbl

[2] E. K. Leinartas, “Kratnye ryady Lorana i raznostnye uravneniya”, Sib. matem. zhurn., 45 (2004), 387–393 | MR | Zbl

[3] E. K. Leinartas, “Kratnye ryady Lorana i fundamentalnye resheniya lineinykh raznostnykh uravnenii”, Sib. matem. zhurn., 48 (2007), 335–340 | MR | Zbl

[4] A. K. Tsikh, “Usloviya absolyutnoi skhodimosti ryada iz koeffitsientov Teilora meromorfnoi funktsii dvukh peremennykh”, Matem. sb., 182:11 (1991), 1588–1612 | MR | Zbl

[5] D. Dadzhion, O. Mersero, Tsifrovaya obrabotka mnogomernykh signalov, Mir, M., 1988

[6] M. Forsberg, M. Passare, A. Tsikh, “Laurent determinants and arrangements of hyperplane amoebas”, Adv. in Math., 151 (2000), 45–70 | DOI | MR | Zbl