The dual problem to M.\,A.~Goldshtik problem with arbitrary vorticity
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 4, pp. 500-506.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of solutions of the dual problem to M. A. Goldshtik problem with arbitrary vorticity was proved in this paper. The effect of non-uniqueness of the solution was determined on a model example.
Keywords: vortex and potential flows, integral equation, Green function
Mots-clés : Liouville equation.
@article{JSFU_2010_3_4_a6,
     author = {Isaak I. Vainshtein},
     title = {The dual problem to {M.\,A.~Goldshtik} problem with arbitrary vorticity},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {500--506},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a6/}
}
TY  - JOUR
AU  - Isaak I. Vainshtein
TI  - The dual problem to M.\,A.~Goldshtik problem with arbitrary vorticity
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2010
SP  - 500
EP  - 506
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a6/
LA  - ru
ID  - JSFU_2010_3_4_a6
ER  - 
%0 Journal Article
%A Isaak I. Vainshtein
%T The dual problem to M.\,A.~Goldshtik problem with arbitrary vorticity
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2010
%P 500-506
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a6/
%G ru
%F JSFU_2010_3_4_a6
Isaak I. Vainshtein. The dual problem to M.\,A.~Goldshtik problem with arbitrary vorticity. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 4, pp. 500-506. http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a6/

[1] M. A Goldshtik, “Matematicheskaya model otryvnykh techenii neszhimaemoi zhidkosti”, Dokl. AN SSSR, 8:6 (1962), 1310–1313

[2] I. I. Vainshtein, M. A. Goldshtik, “O dvizhenii idealnoi zhidkosti v pole koriolisovykh sil”, Dokl. AN SSSR, 6:6 (1967), 1277–1230

[3] I. I. Vainshtein, O dvizhenii idealnoi zhidkosti s zavikhrennymi zonami, Avtoreferat dissertatsii na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk, Novosibirsk, 1972, 12 pp.

[4] M. A Goldshtik, Vikhrevye potoki, Nauka, Novosibirsk, 1961

[5] I. I. Vainshtein, V. K. Yurovskii, “Ob odnoi zadache sopryazheniya vikhrevykh i potentsialnykh techenii idealnoi zhidkosti”, Zh. prikl. mekh. i tekhn. fiz., 1976, no. 6, 98–100

[6] I. I. Vainshtein, P. S. Litvinov, “Model M. A. Lavrenteva o skleike vikhrevykh i potentsialnykh techenii idealnoi zhidkosti”, Vestnik SibGAU, 24:3 (2009), 7–9 | MR

[7] P. S. Litvinov, Matematicheskoe modelirovanie dvukhsloinykh potokov v podshipnikakh skolzheniya, separatorakh i techeniyakh po skheme M. A. Lavrenteva, Avtoreferat dissertatsii na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk, Krasnoyarsk, 2009, 24 pp.

[8] M. G. Lepchinskii, Suschestvovanie i ustoichivost kraevykh zadach s razryvnymi nelineinostyami, Avtoreferat dissertatsii na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk, Ekaterinburg, 2008, 24 pp.

[9] A. B. Shabat, “O dvukh zadachakh na skleivanie”, Dokl. AN SSSR, 150:6 (1963), 1242–1245 | MR

[10] S. N. Antontsev, V. D. Lelyukh, Dinamika sploshnoi sredy, 1, 1969, 131–153

[11] P. I. Plotnikov, “O razreshimosti odnogo klassa zadach na skleivanie vikhrevykh i potentsialnykh techenii”, Dinamika sploshnoi sredy, 3, 1969, 61–69

[12] R. Kurant, Uravneniya s chastnymi proizvodnymi, Nauka, M., 1964 | MR

[13] E. I. Semenov, “O novykh tochnykh resheniyakh neavtonomnogo uravneniya Liuvillya”, Sib. matem. zhurn., 49:1 (2008), 207–217 | MR | Zbl