On the set of convergence for Mellin--Barnes integral representing solutions to the tetranomial algebraic equation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 4, pp. 475-486.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we give the detailed description of the set of convergence for Mellin–Barnes integral representing solutions to the tetranomial algebraic equation.
Mots-clés : algebraic equation
Keywords: Mellin–Barnes integral.
@article{JSFU_2010_3_4_a4,
     author = {Irina A. Antipova and Tatyana V. Zykova},
     title = {On the set of convergence for {Mellin--Barnes} integral representing solutions to the tetranomial algebraic equation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {475--486},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a4/}
}
TY  - JOUR
AU  - Irina A. Antipova
AU  - Tatyana V. Zykova
TI  - On the set of convergence for Mellin--Barnes integral representing solutions to the tetranomial algebraic equation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2010
SP  - 475
EP  - 486
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a4/
LA  - ru
ID  - JSFU_2010_3_4_a4
ER  - 
%0 Journal Article
%A Irina A. Antipova
%A Tatyana V. Zykova
%T On the set of convergence for Mellin--Barnes integral representing solutions to the tetranomial algebraic equation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2010
%P 475-486
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a4/
%G ru
%F JSFU_2010_3_4_a4
Irina A. Antipova; Tatyana V. Zykova. On the set of convergence for Mellin--Barnes integral representing solutions to the tetranomial algebraic equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 4, pp. 475-486. http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a4/

[1] I. A. Antipova, “Obrascheniya mnogomernykh preobrazovanii Mellina i resheniya algebraicheskikh uravnenii”, Matem. sb., 198:4 (2007), 3–20 | MR | Zbl

[2] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, “Generalized Euler integrals and A-hypergeometric functions”, Adv. in Math., 84:2 (1990), 255–271 | DOI | MR | Zbl

[3] H. R. Mellin, “Résolution de l'équation algébrique générale à l'aide de la fonction gamma”, C. R. Acad. Sci. Paris Sér. I Math., 172 (1921), 658–661 | Zbl

[4] R. Buschman, H. Srivastava, “Convergence regions for some multiple Mellin–Barnes contour integrals representing generalized hypergeometric functions”, Internat. J. Math. Ed. Sci. Tech., 17:5 (1986), 605–609 | DOI | MR | Zbl

[5] M. Passare, A. Tsikh, O. Zhdanov, “A multidimensional Jordan residue lemma with an application to Mellin–Barnes integrals”, Aspects Math., 26 (1994), 233–241 | MR | Zbl

[6] O. N. Zhdanov, A. K. Tsikh, “Issledovanie kratnykh integralov Mellina–Barnsa s pomoschyu mnogomernykh vychetov”, Sib. matem. zhurn., 39:2 (1998), 281–298 | MR | Zbl

[7] L. Nilsson, M. Passare, A. Tsikh, “Hypergeometric series and integrals” (to appear)

[8] L. Nilsson, Amoebas, Discriminants, and Hypergeometric Functions, Doctoral Thesis, Department of Mathematics, Stockholm University, Sweden, 2009

[9] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, Nauka, M., 1973

[10] A. G. Khovanskii, “Mnogogranniki Nyutona (razreshenie osobennostei)”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 22, VINITI, M., 1985, 207–239 | MR | Zbl