An identification problem of the source function of the special form in two-dimensional parabolic equation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 4, pp. 556-564.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence, uniqueness and stability of solution by input data of the identification problem for parabolic equation with source function of the special form in the case of Cauchy's data has been proved in this article.
Keywords: problem of the identification of source function, inverse problem, equations in partial derivatives, method of weak approximation, solution stability.
@article{JSFU_2010_3_4_a12,
     author = {Igor V. Frolenkov and Ekaterina N. Kriger},
     title = {An identification problem of the source function of the special form in two-dimensional parabolic equation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {556--564},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a12/}
}
TY  - JOUR
AU  - Igor V. Frolenkov
AU  - Ekaterina N. Kriger
TI  - An identification problem of the source function of the special form in two-dimensional parabolic equation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2010
SP  - 556
EP  - 564
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a12/
LA  - ru
ID  - JSFU_2010_3_4_a12
ER  - 
%0 Journal Article
%A Igor V. Frolenkov
%A Ekaterina N. Kriger
%T An identification problem of the source function of the special form in two-dimensional parabolic equation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2010
%P 556-564
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a12/
%G ru
%F JSFU_2010_3_4_a12
Igor V. Frolenkov; Ekaterina N. Kriger. An identification problem of the source function of the special form in two-dimensional parabolic equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 4, pp. 556-564. http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a12/

[1] Yu. Ya. Belov, I. V. Frolenkov, “Nekotorye zadachi identifikatsii koeffitsientov polulineinykh parabolicheskikh uravnenii”, Dokl. RAN, 404:5 (2005), 583–585 | MR | Zbl

[2] Yu. Ya. Belov, I. V. Frolenkov, “O zadache identifikatsii dvukh koeffitsientov parabolicheskogo polulineinogo uravneniya s usloviyami pereopredeleniya, zadannymi na gladkoi krivoi”, Vychislitelnye tekhnologii, 11:1 (2006), 46–54

[3] Yu. Ya. Belov, S. A. Kantor, Metod slaboi approksimatsii, KrasGU, Krasnoyarsk, 1999

[4] N. N. Yanenko, Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Novosibirsk, 1967

[5] O. A. Afinogenova, Yu. Ya. Belov, I. V. Frolenkov, “O stabilizatsii resheniya zadachi identifikatsii funktsii istochnika odnomernogo parabolicheskogo uravneniya”, Dokl. RAN, 424:4 (2009), 439–441 | MR

[6] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for solving inverse problems in mathematical physics, Marcel Dekker, New York, 2000 | MR | Zbl

[7] O. N. Cherepanova, T. N. Shipina, “Ob odnoi zadache identifikatsii funktsii istochnika v parabolicheskom uravnenii”, Zhurnal SFU. Matematika i fizika, 2:3 (2009), 370–375