On the Boussinesq approximation in the problems of convection induced by high--frequency vibration
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 4, pp. 433-449.

Voir la notice de l'article provenant de la source Math-Net.Ru

The applicability of Boussinesq approximation to the problems of thermovibrational convection in closed volumes is analyzed. The limit of high frequency and small amplitude is considered on the basis of averaging approach. The magnitudes of oscillatory and averaged flow fields are estimated. It is found that the dependence of the Reynolds number for averaged motion on the ratio of Gershuni and Prandtl numbers obeys linear and square root laws for small and large Reynolds numbers, respectively. It provides new essential information about the intensity of averaged flows in a wide range of vibration stimuli. Taking into account the obtained estimations, the basic assumptions of Boussinesq approach are applied to the momentum, continuity, and energy equations for a compressible, viscous heat–conducting fluid. The contribution of viscous energy dissipation and pressure work to the energy balance is also taken into account. The order of magnitude analysis provides a number of dimensionless parameters, the smallness of which guarantees the validity of Boussinesq approximation.
Keywords: vibrational convection, averaged motion.
Mots-clés : Boussinesq approximation
@article{JSFU_2010_3_4_a1,
     author = {Ilya I. Ryzhkov and Yuri A. Gaponenko},
     title = {On the {Boussinesq} approximation in the problems of convection induced by high--frequency vibration},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {433--449},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a1/}
}
TY  - JOUR
AU  - Ilya I. Ryzhkov
AU  - Yuri A. Gaponenko
TI  - On the Boussinesq approximation in the problems of convection induced by high--frequency vibration
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2010
SP  - 433
EP  - 449
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a1/
LA  - en
ID  - JSFU_2010_3_4_a1
ER  - 
%0 Journal Article
%A Ilya I. Ryzhkov
%A Yuri A. Gaponenko
%T On the Boussinesq approximation in the problems of convection induced by high--frequency vibration
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2010
%P 433-449
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a1/
%G en
%F JSFU_2010_3_4_a1
Ilya I. Ryzhkov; Yuri A. Gaponenko. On the Boussinesq approximation in the problems of convection induced by high--frequency vibration. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 4, pp. 433-449. http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a1/

[1] G. Z. Gershuni, D. V. Lyubimov, Thermal Vibrational Convection, Wiley Sons, 1998

[2] S. M. Zenkovskaya, I. B. Simonenko, “Effect of high-frequency vibration on convection initiation”, Fluid Dynamics, 1:5 (1966), 51

[3] I. B. Simonenko, “A justification of the averaging method for a problem of convection in a field of rapidly oscillating forces and for other parabolic equations”, Math. USSR Sb., 16 (1972), 245 | DOI | Zbl

[4] D. Beysens, “Vibrations in space as an artificial gravity?”, Europhysicsnews, 37:3 (1966), 22

[5] R. Savino, R. Monti, “Fluid–dynamics experiment sensitivity to accelerations prevailing on microgravity platforms”, Physics of Fluids in Microgravity, ed. R. Monti, Taylor Francis, London, 2001, 178

[6] K. Hirata, T. Sasaki, H. Tanigawa, “Vibrational effects on convection in a square cavity at zero gravity”, J. Fluid Mech., 445 (2001), 327 | DOI | Zbl

[7] I. Cisse, G. Bardan, A. Mojtabi, “Rayleigh Benard convective instability of a fluid under high-frequency vibration”, Int. J. Heat Mass Trans., 47 (2004), 4101 | DOI | Zbl

[8] R. Savino, R. Monti, M. Piccirillo, “Thermovibrational convection in a fluid cell”, Computers and fluids, 27:8 (1998), 923 | DOI | Zbl

[9] V. Shevtsova, D. Melnikov, J. C. Legros, Y. Yan, Z. Saghir, T. Lyubimova, G. Sedelnikov, B. Roux, “Influence of vibrations on thermodiffusion in binary mixture: A benchmark of numerical solutions”, Phys. Fluids, 19 (2007), 017111 | DOI | Zbl

[10] M. P. Zavarykin, S. V. Zorin, G. F. Putin, “On thermoconvective instability in vibrational field”, Dokl. AN SSSR, 299:2 (1988), 309 (Russian)

[11] I. A. Babushkin, V. A. Demin, “Vibrational convection in the Hele–Shaw cell. Theory and experiment”, J. Appl. Mech. Tech. Phys., 47:2 (2006), 183 | DOI | Zbl

[12] A. V. Zyuzgin, A. I. Ivanov, V. I. Polezhaev, G. F. Putin, E. B. Soboleva, “Convective motions in near-critical fluids under real zero-gravity conditions”, Cosmic Research, 39:2 (2001), 175 | DOI

[13] D. E. Melnikov, I. I. Ryzhkov, A. Mialdun, V. Shevtsova, “Thermovibrational Convection in Microgravity: Preparation of a Parabolic Flight Experiment”, Microgravity Sci. Technol., 20:1 (2008), 29 | DOI

[14] A. Mialdun, I. I. Ryzhkov, D. E. Melnikov, V. Shevtsova, “Experimental evidence of thermal vibrational convection in a non-uniformly heated fluid in a reduced gravity environment”, Phys. Rev. Lett., 101 (2008), 084501 | DOI

[15] V. M. Shevtsova, I. I. Ryzhkov, D. E.`Melnikov, Y. A. Gaponenko, A. Z. Mialdun, “Experimental and theoretical study of vibration-induced thermal convection in low gravity”, J. Fluid Mech., 648 (2010), 53 | DOI | MR | Zbl

[16] E. A. Spiegel, G. Veronis, “On the Boussinesq approximation for a compressible fluid”, Astrophys. J., 131:2 (1960), 442 | DOI | MR

[17] J. M. Mihaljan, “A rigorous exposition of the Boussinesq approximations applicable to a thin layer of fluid”, Astrophys. J., 136:3 (1962), 1126 | DOI | MR

[18] D. D. Gray, A. Giorginia, “The validity of the Boussinesq approximation for liquids and gases”, Int. J. Heat Mass Trans., 19:5 (1976), 545 | DOI | Zbl

[19] D. J. Tritton, Physical Fluid Dynamics, Clarendon press, Oxford, 1988 | MR

[20] L. D. Landau, E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, 1982

[21] L. G. Loycyansky, Mechanics of Liquid and Gas, Nauka, Moscow, 1987 (Russian)

[22] V. S. Vladimirov, Equations of Mathematical Physics, Dekker, New York, 1971 | MR | Zbl

[23] Y. A. Gaponenko, J. A. Pojman, V. A. Volpert, S. M. Zenkovskaya, “Effect of high-frequency vibration on convection in miscible liquids”, J. Appl. Mech. Tech. Phys., 47:1 (2006), 190 | DOI | Zbl

[24] L. D. Landau, E. M. Lifshitz, Statistical Physics, v. 1, Pergamon Press, Oxford, 1980 | MR