Classical and quantum-mechanical description of the Arnol'd Diffusion in a~system with~2.5 degrees of freedom
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 357-368.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a universal phenomenon of nonlinear dynamics – the Arnol'd Diffusion – in a model system with 2.5 degrees of freedom. In the model an influence of three main resonances which take place in a phase space of the system is considered. The results obtained during classical and quantum-mechanical observation are compared. It was shown that a dependence of a rate of the quantum Arnol'd diffusion on parameters of the model behave alike classical one, however a value of the diffusion rate using methods of quantum mechanics lesser then that in classical case approximately at one of the order. It was found that presence of a threshold by the perturbation parameters is not necessarily feature of the Arnol'd diffusion. Also it was shown that there can occur a hybrid process in the quantum system in weak chaotic regime what doesn't have classical analogue – diffusion along resonance plus oscillations across overlapped resonances.
Keywords: nonlinear resonance, quantum chaos.
Mots-clés : Arnol'd diffusion
@article{JSFU_2010_3_3_a9,
     author = {Alexander I. Malyshev and Larisa A. Chizhova},
     title = {Classical and quantum-mechanical description of the {Arnol'd} {Diffusion} in a~system with~2.5 degrees of freedom},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {357--368},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a9/}
}
TY  - JOUR
AU  - Alexander I. Malyshev
AU  - Larisa A. Chizhova
TI  - Classical and quantum-mechanical description of the Arnol'd Diffusion in a~system with~2.5 degrees of freedom
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2010
SP  - 357
EP  - 368
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a9/
LA  - en
ID  - JSFU_2010_3_3_a9
ER  - 
%0 Journal Article
%A Alexander I. Malyshev
%A Larisa A. Chizhova
%T Classical and quantum-mechanical description of the Arnol'd Diffusion in a~system with~2.5 degrees of freedom
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2010
%P 357-368
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a9/
%G en
%F JSFU_2010_3_3_a9
Alexander I. Malyshev; Larisa A. Chizhova. Classical and quantum-mechanical description of the Arnol'd Diffusion in a~system with~2.5 degrees of freedom. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 357-368. http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a9/

[1] V. I. Arnol'd, DAN USSR, 156 (1964), 9 (Russian) | MR

[2] A. J. Lichtenberg, M. A. Lieberman, Regular and Chaotic Dynamics, Springer-Verlag, New York, 1992 | MR | Zbl

[3] B. V. Chirikov, Phys. Rep., 52 (1979), 263 | DOI | MR

[4] J. von Milchevski, G. H. F. Diercksen, T. Uzer, Phys. Rev. Lett., 76 (1996), 2890 | DOI

[5] L. E. Reichl, The Transition to Chaos: Conservative Classical Systems and Quantum Manifestation, Springer-Verlag, New York, 1992 | MR | Zbl

[6] E. V. Shuryak, Zh. Eksp. Teor. Fiz., 71 (1976), 2039 (Russian)

[7] D. M. Leitner, P. G. Wolynes, Phys. Rev. Lett., 79 (1997), 55 | DOI

[8] V. Ya. Demikhovskii, F. M. Izrailev, A. I. Malyshev, Phys. Rev. Lett., 88 (2002), 154101 | DOI

[9] V. Ya. Demikhovskii, F. M. Izrailev, A. I. Malyshev, Phys. Lett. A, 352 (2006), 491 ; arXiv: cond-mat/0610390 | DOI | Zbl

[10] A. I. Malyshev, L. A. Chizhova, Izv. Vuzov. Prikl. Nelin. Din., 17:1 (2009), 46 (Russian)

[11] G. M. Zaslavsky, Physics of Chaos in Hamiltonian Systems, Imperial College Press, London, 1998 | Zbl

[12] G. M. Zaslavsky, Chaos in Dynamic Systems, Harwood Acad. Publ., New York, 1985 | MR

[13] V. Ya. Demikhovsky, D. I. Kamenev, G. A. Luna-Acosta, Phys. Rev. E, 59 (1999), 294 | DOI

[14] M. E. Flatté, M. Holthaus, Ann. of Phys., 245 (1996), 113 | DOI | Zbl

[15] G. P. Berman, A. R. Kolovsky, Usp. Fiz. Nauk, 162:4 (1992), 95 (Russian)

[16] W. A. Lin, L. E. Reichl, Phys. Rev. A, 37 (1988), 3972 | DOI