Wave chaos in underwater acoustics
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 336-348.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of long-range sound propagation in an oceanic waveguide is considered. Even a weak range-dependent sound-speed perturbation is sufficient to cause chaotic dynamics in the ray limit. In the real ocean, an important role in the ray instability is played by small-scale depth oscillations of the sound-speed perturbation. Those small-scale oscillations should violate ray-wave correspondence. We carry out a comparative analysis of ray- and wave-based patterns in phase space and track how their discrepancies grow with decreasing the depth scale of a sound-speed perturbation. It is shown that the semiclassical theory can reproduce qualitative peculiarities of wave behavior even with small perturbation's scales. A strong conflict occurs only with very low acoustic frequencies.
Keywords: ray chaos, wave chaos, quantum chaos, long-range sound propagation, periodic orbits.
@article{JSFU_2010_3_3_a7,
     author = {Denis V. Makarov and Leonid E. Kon'kov and Michael Yu. Uleysky},
     title = {Wave chaos in underwater acoustics},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {336--348},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a7/}
}
TY  - JOUR
AU  - Denis V. Makarov
AU  - Leonid E. Kon'kov
AU  - Michael Yu. Uleysky
TI  - Wave chaos in underwater acoustics
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2010
SP  - 336
EP  - 348
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a7/
LA  - en
ID  - JSFU_2010_3_3_a7
ER  - 
%0 Journal Article
%A Denis V. Makarov
%A Leonid E. Kon'kov
%A Michael Yu. Uleysky
%T Wave chaos in underwater acoustics
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2010
%P 336-348
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a7/
%G en
%F JSFU_2010_3_3_a7
Denis V. Makarov; Leonid E. Kon'kov; Michael Yu. Uleysky. Wave chaos in underwater acoustics. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 336-348. http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a7/

[1] W. M. Ewing, J. L. Worcel, “Long-range sound transmission, III”, Geol. Soc. Amer. Mem., 27 (1948), 1–32

[2] L. M. Brekhovskikh, Dokl. Akad. Nauk SSSR, 69 (1949), 157 (Russian)

[3] L. D. Rosenberg, Dokl. Akad. Nauk SSSR, 69 (1949), 175 (Russian)

[4] L. E. Kon'kov, D. V. Makarov, E. V. Sosedko, M. Yu. Uleysky, “Recovery of ordered periodic orbits with increasing wavelength for sound propagation in a range-dependent waveguide”, Phys. Rev. E, 76 (2007), 056212 | DOI

[5] D. V. Makarov, L. E. Kon'kov, M. Yu.Uleysky, “The ray-wave correspondence and the suppression of chaos in long-range sound propagation in the ocean”, Acoust. Phys., 54 (2008), 382–391 | DOI

[6] K. C. Hegewisch, N. R. Cerruti, S. Tomsovic, “Ocean acoustic wave propagation and ray method correspondence: internal wave fine structure”, J. Acoust. Am. Soc., 117 (2005), 1582–1594 | DOI

[7] D. V. Makarov, M. Yu. Uleysky, S. V. Prants, “Ray chaos and ray clustering in an ocean waveguide”, Chaos, 14 (2004), 79–95 | DOI

[8] D. Makarov, S. Prants, A. Virovlyansky, G. Zaslavsky, Ray and wave chaos in ocean acoustics, World Scientific, Singapore, 2010 | Zbl

[9] A. L. Virovlyansky, G. M. Zaslavsky, “Wave chaos in terms of normal modes”, Phys. Rev. E, 59 (1999), 1656–1668 | DOI | MR

[10] I. Smirnov, A. L. Virovlyansky, G. Zaslavsky, “Theory and applications of ray chaos to underwater acoustics”, Phys. Rev. E, 64 (2001), 036221 | DOI

[11] B. V. Chirikov, “A universal instability of many-dimensional oscillator systems”, Phys. Rep., 52 (1979), 265–379 | DOI | MR

[12] D. V. Makarov, M. Yu. Uleysky, “Ray escape from a range-dependent underwater sound channel”, Acoust. Phys., 53 (2007), 495–502 | DOI

[13] F. J. Beron-Vera, M. G. Brown, J. A. Colosi, S. Tomsovic, A. L. Virovlyansky, M. A. Wolfson, G. M. Zaslavsky, “Ray dynamics in a long-range acoustic propagation experiment”, J. Acoust. Soc. Am., 114 (2003), 1226–1242 | DOI

[14] I. Smirnov, A. L. Virovlyansky, M. Edelman, G. Zaslavsky, “Chaos-induced intensification of wave scattering”, Phys. Rev. E, 72 (2005), 026206 | DOI | MR

[15] G. Berman, A. Kolovsky, “Quantum chaos in interactions of multilevel quantum systems with a coherent radiation field”, Sov. Phys. Usp., 35 (1992), 303–326 | DOI

[16] S. Tomsovic, D. Ullmo, “Chaos-assisted tunneling”, Phys. Rev. E, 50 (1994), 145–162 | DOI

[17] A. Mouchet, C. Eltschka, P. Schlagheck, “Influence of classical resonances on chaotic tunneling”, Phys. Rev. E, 74 (2006), 026211 | DOI

[18] E. J. Heller, “Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits”, Phys. Rev. Lett., 53 (1984), 1515–1518 | DOI | MR

[19] S. Tomsovic, E. J. Heller, “Long-time semiclassical dynamics of chaos: the stadium billiard”, Phys. Rev. E, 47 (1993), 282–299 | DOI | MR