Chaotic instantons and ground quasienergy splitting in kicked double-well system with time-reversal symmetry
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 325-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

Chaotic instanton approach was used to describe tunneling properties of the particle in the kicked double well system. Effective Hamiltonian for the kicked system was constructed using matrix expansion formula for one period evolution operator exponent. Chaotic instanton approximation was constructed in the framework of the effective model. This approximation was used for estimation of the particle energy range on the chaotic instanton trajectory. Formula for ground quasienergy splitting was obtained averaging nonperturbed trajectory action in the obtained energy range in the framework of chaotic instanton approach. Results of numerical calculations for the ground quasienergy splitting dependence on both the perturbation strength and frequency are in good agreement with the derived analytical formula.
Keywords: double-well potential, chaotic instanton, quasienergy levels.
@article{JSFU_2010_3_3_a6,
     author = {Vyatcheslav I. Kuvshinov and Andrey V. Kuzmin and Vadzim A. Piatrou},
     title = {Chaotic instantons and ground quasienergy splitting in kicked double-well system with time-reversal symmetry},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {325--335},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a6/}
}
TY  - JOUR
AU  - Vyatcheslav I. Kuvshinov
AU  - Andrey V. Kuzmin
AU  - Vadzim A. Piatrou
TI  - Chaotic instantons and ground quasienergy splitting in kicked double-well system with time-reversal symmetry
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2010
SP  - 325
EP  - 335
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a6/
LA  - en
ID  - JSFU_2010_3_3_a6
ER  - 
%0 Journal Article
%A Vyatcheslav I. Kuvshinov
%A Andrey V. Kuzmin
%A Vadzim A. Piatrou
%T Chaotic instantons and ground quasienergy splitting in kicked double-well system with time-reversal symmetry
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2010
%P 325-335
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a6/
%G en
%F JSFU_2010_3_3_a6
Vyatcheslav I. Kuvshinov; Andrey V. Kuzmin; Vadzim A. Piatrou. Chaotic instantons and ground quasienergy splitting in kicked double-well system with time-reversal symmetry. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 325-335. http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a6/

[1] A. J. Lichtenberg, M. A. Liberman, Regular and Chaotic Dynamics, Springer-Verlag, New York, 1992 | MR | Zbl

[2] R. Z. Sagdeev, D. A. Ousikov, G. M. Zaslavski, Nonlinear physics: from the pendulum to turbulence and chaos, Harwood Academic Pub, Chur [Switzerland]–Philadelphia, 1988

[3] F. Haake, Quantum signatures of chaos, Springer-Verlag, Berlin–Heidelberg, 2001 | MR | Zbl

[4] M. Grifoni, P. Hanggi, Phys. Rep., 304 (1998), 229–354 | DOI | MR

[5] W. A. Lin, L. E. Ballentine, Phys. Rev. Lett., 65 (1990), 2927 | DOI

[6] A. Peres, Phys. Rev. Lett., 67 (1991), 158 | DOI

[7] J. Plata, J. M. G. Llorente, J. Phys. A Math. Gen., 25 (1992), L303 | DOI

[8] M. Holthaus, Phys. Rev. Lett., 69 (1992), 1596 | DOI

[9] O. Bohigas, S. Tomsovic, D. Ullmo, Phys. Rep., 223 (1993), 43 | DOI | MR

[10] M. Latka, P. Grigolini, B. J. West, Phys. Rev. A, 50 (1994), 1071 | DOI

[11] F. Grossmann, T. Dittrich, P. Jung, P. Hänggi, Phys. Rev. Lett., 67 (1991), 516 | DOI

[12] C. Dembowski et al., Phys. Rev. Lett., 84 (2000), 867 | DOI

[13] D. A. Steck, W. H. Oskay, M. G. Raizen, Science, 293 (2001), 274 | DOI

[14] W. K. Hensinger et al., Nature, 412 (2001), 52 | DOI

[15] V. A. Podolskiy, E. E. Narimanov, Optics Letters, 30 (2005), 474 | DOI

[16] I. Vorobeichik, E. Narevicius, G. Rosenblum, M. Orenstein, N. Moiseyev, Phys. Rev. Lett., 90 (2003), 176806 | DOI

[17] G. D. Valle et al., Phys. Rev. Lett., 98 (2007), 263601 | DOI

[18] E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, M. K. Oberthaler, Phys. Rev. Lett., 100 (2008), 190405 | DOI

[19] R. Scharf, J. Phys. A Math. Gen., 21 (1988), 2007 | DOI | MR | Zbl

[20] V. V. Sokolov, O. V. Zhirov, D. Alonso, G. Casati, Phys. Rev. Lett., 84 (2000), 3566 | DOI

[21] S. Rahav, I. Gilary, S. Fishman, Phys. Rev. A, 68 (2003), 013820 | DOI

[22] O. Brodier, P. Schlagheck, D. Ullmo, Ann. Phys., 300 (2002), 88 | DOI | MR | Zbl

[23] M. Bandyopadhyay, Phys. Scr., 77 (2008), 055006 | DOI | MR | Zbl

[24] R. Utermann, T. Dittrich, P. Hänggi, Phys. Rev. E, 49 (1994), 273 | DOI

[25] J. H. Shirley, Phys. Rev., 138 (1965), B979 | DOI

[26] S. D. Frischat, E. Doron, Phys. Rev. E, 57 (1998), 1421 | DOI

[27] A. Shudo, S. Kensuke, Physica D Nonlinear Phenomena, 115 (1998), 234 | DOI | MR | Zbl

[28] V. I. Kuvshinov, A. V. Kuzmin, R. G. Shulyakovsky, Acta Phys. Polon. B, 33 (2002), 1721 | MR | Zbl

[29] V. I. Kuvshinov, A. V. Kuzmin, R. G. Shulyakovsky, Phys. Rev. E, 67 (2003), 015201(R) | DOI

[30] V. I. Kuvshinov, A. V. Kuzmin, PEPAN, 36 (2005), 100

[31] A. Igarashi, H. S. Yamada, Physica D Nonlinear Phenomena, 221 (2006), 146 | DOI | Zbl

[32] H. Jirari, H. Kroger, X. Q. Luo, K. J. M. Moriarty, S. G. Rubin, Phys. Lett. A, 281 (2001), 1 | DOI | MR | Zbl

[33] F. Paradis, H. Kroger, G. Melkonyan, K. J. M. Moriarty, Physical Review A Atomic, Molecular, and Optical Physics, 71 (2005), 022106 | DOI

[34] O. Brodier, P. Schlagheck, D. Ullmo, Phys. Rev. Lett., 87 (2001), 064101 | DOI

[35] A. M. Polyakov, Nucl. Phys. B, 120 (1977), 429 | DOI | MR

[36] A. I. Vainshtein, V. I. Zakharov, V. A. Novikov, M. A. Shifman, Sov. Phys. Usp., 25 (1982), 195 | DOI

[37] J. Zinn-Justin, J. Math. Phys., 22 (1981), 511 | DOI | MR

[38] E. Merzbacher, Quantum Mechanics, John Wiley Sons, New York, 1970 | MR

[39] C. F. Wohler, E. Shuryak, Phys. Lett. B, 333 (1994), 467 | DOI