Lyapunov exponents in 1D Anderson localization with long-range correlations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 297-302
Voir la notice de l'article provenant de la source Math-Net.Ru
The Lyapunov exponents for Anderson localization are studied in a one dimensional disordered system. A random Gaussian potential with the power law decay $\sim1/|x|^q$ of the correlation function is considered. The exponential growth of the moments of the eigenfunctions and their derivative is obtained. Positive Lyapunov exponents, which determine the asymptotic growth rate are found.
Keywords:
long-range correlations, fractional derivatives.
Mots-clés : Furutsu–Novikov formula
Mots-clés : Furutsu–Novikov formula
@article{JSFU_2010_3_3_a3,
author = {Alexander Iomin},
title = {Lyapunov exponents in {1D} {Anderson} localization with long-range correlations},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {297--302},
publisher = {mathdoc},
volume = {3},
number = {3},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a3/}
}
TY - JOUR AU - Alexander Iomin TI - Lyapunov exponents in 1D Anderson localization with long-range correlations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2010 SP - 297 EP - 302 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a3/ LA - en ID - JSFU_2010_3_3_a3 ER -
%0 Journal Article %A Alexander Iomin %T Lyapunov exponents in 1D Anderson localization with long-range correlations %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2010 %P 297-302 %V 3 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a3/ %G en %F JSFU_2010_3_3_a3
Alexander Iomin. Lyapunov exponents in 1D Anderson localization with long-range correlations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 297-302. http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a3/