Lyapunov exponents in 1D Anderson localization with long-range correlations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 297-302.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Lyapunov exponents for Anderson localization are studied in a one dimensional disordered system. A random Gaussian potential with the power law decay $\sim1/|x|^q$ of the correlation function is considered. The exponential growth of the moments of the eigenfunctions and their derivative is obtained. Positive Lyapunov exponents, which determine the asymptotic growth rate are found.
Keywords: long-range correlations, fractional derivatives.
Mots-clés : Furutsu–Novikov formula
@article{JSFU_2010_3_3_a3,
     author = {Alexander Iomin},
     title = {Lyapunov exponents in {1D} {Anderson} localization with long-range correlations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {297--302},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a3/}
}
TY  - JOUR
AU  - Alexander Iomin
TI  - Lyapunov exponents in 1D Anderson localization with long-range correlations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2010
SP  - 297
EP  - 302
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a3/
LA  - en
ID  - JSFU_2010_3_3_a3
ER  - 
%0 Journal Article
%A Alexander Iomin
%T Lyapunov exponents in 1D Anderson localization with long-range correlations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2010
%P 297-302
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a3/
%G en
%F JSFU_2010_3_3_a3
Alexander Iomin. Lyapunov exponents in 1D Anderson localization with long-range correlations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 297-302. http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a3/

[1] P. W. Anderson, Phys. Rev., 109 (1958), 1492 | DOI

[2] L. Sanchez-Palencia et al., Phys. Rev. Let., 98 (2007), 210401 ; J. Billy et al., Nature, 453 (2008), 891 | DOI | DOI

[3] G. Roati et al., Nature, 453 (2008), 895 | DOI

[4] U. Kuhl et al., Appl. Phys. Let., 77 (2000), 633 ; U. Kuhl, H.-J. Stöckmann, Phys. Rev. Lett., 80 (1998), 3232 | DOI | DOI

[5] A. M. Garcia-Garcia, E. Cuevas, Absence of localization in one-dimensional disordered systems, arXiv: 0808.3757v1[cond-mat.dis-nn]

[6] F. A. B. F. de Moura, M. L. Lyra, Phys. Rev. Let., 81 (1998), 3735 | DOI

[7] S. Kotani, Proc. Kyoto Stoch. Com., 1982; B. Simon, Comm. Math. Phys., 89 (1983), 227 | DOI | MR | Zbl

[8] S. Kotani, B. Simon, Comm. Math. Phys., 112 (1987), 103 | DOI | MR | Zbl

[9] L. A. Pastur, A. L. Figotin, Spectra of Random and Almost-Periodic Operators, Springer, Berlin, 1992 | MR

[10] F. A. B. F. de Moura, M. L. Lyra, Physica A, 266 (1999), 465 | DOI

[11] U. Kuhl, F. M. Izrailev, A. A. Krokhin, Phys. Rev. Lett., 100 (2008), 126402 | DOI

[12] H. Shima, T. Nomura, T. Nakayama, Phys. Rev. B, 70 (2004), 075116 | DOI

[13] I. M. Lifshits, S. A. Gredeskul, L. A. Pastur, Introduction to the theory of disordered systems, Wiley-Interscience, New York, 1988 | MR

[14] K. Mallick, P. Marcq, Phys. Rev. E, 66 (2002), 041113 | DOI

[15] H. Schomerus, M. Titov, Phys. Rev. E, 66 (2002), 066207 | DOI | MR

[16] R. Zilmer, A. Pikovsky, Phys. Rev. E, 67 (2003), 061117 | DOI

[17] S. Fishman, A. Iomin, K. Mallick, Phys. Rev. E, 78 (2008), 066605 | DOI | MR

[18] B. I. Halperin, Phys. Rev. A, 139 (1965), 104 | DOI | MR

[19] V. I. Kliatskin, Stochastic equations and waves in randomly inhomogeneous media, Nauka, Moskva, 1980 (Russian) | MR

[20] J.-P. Bouchaud, A. Georges, Phys. Rep., 195 (1990), 127 | DOI | MR

[21] R. Metzler, J. Klafter, Phys. Rep., 339 (2000), 1 | DOI | MR | Zbl

[22] G. M. Zaslavsky, Phys. Rep., 371 (2002), 461 | DOI | MR | Zbl

[23] H. Bateman, A. Erdélyi, Higher Transcendental functions, v. 3, McGraw-Hill, New York, 1955

[24] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999 | MR | Zbl