The parametric analysis of basic macrokinetic models
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 411-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

Parametric analysis of 2D nonlinear mathematical model steady states is made. The bifurcation curves multiplicity and stability are constructed. Parametric portrait of dynamical system is calculated.
Mots-clés : system “reaction+diffusion”, bifurcation, diffusion.
Keywords: homogenious steady state
@article{JSFU_2010_3_3_a15,
     author = {Svetlana B. Tsybenova},
     title = {The parametric analysis of basic macrokinetic models},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {411--416},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a15/}
}
TY  - JOUR
AU  - Svetlana B. Tsybenova
TI  - The parametric analysis of basic macrokinetic models
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2010
SP  - 411
EP  - 416
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a15/
LA  - ru
ID  - JSFU_2010_3_3_a15
ER  - 
%0 Journal Article
%A Svetlana B. Tsybenova
%T The parametric analysis of basic macrokinetic models
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2010
%P 411-416
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a15/
%G ru
%F JSFU_2010_3_3_a15
Svetlana B. Tsybenova. The parametric analysis of basic macrokinetic models. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 411-416. http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a15/

[1] A. I. Volpert, A. N. Ivanova, “Matematicheskie modeli v khimicheskoi kinetike”, Matematicheskoe modelirovanie. Nelineinye differentsialnye uravneniya matematicheskoi fiziki, Nauka, M., 1987, 57–102 | MR

[2] A. N. Ivanova, “Mnogomernye statsionarnye i avtokolebatelnye rezhimy raboty khimicheskikh reaktorov (bifurkatsii korazmernosti dva pri izmenenii razmerov reaktora)”, Matematicheskie metody v khimicheskoi kinetike, ed. V. I. Bykova, Nauka, Novosibirsk, 1990, 96–120

[3] E. S. Kurkina, S. M. Makarova, M. M. Slinko, “Matematicheskoe modelirovanie avtokolebanii skorosti reaktsii okisleniya okisi ugleroda na metallicheskikh katalizatorakh”, Matematicheskoe modelirovanie, 2:1 (1990), 14–26 | Zbl

[4] E. S. Kurkina, A. V. Malykh, “Issledovanie uedinennykh beguschikh voln v odnoi chetyrekhkomponentnoi modeli tipa reaktsiya-diffuziya”, ZhVM i MF, 41:10 (2001), 1597–1609 | MR | Zbl

[5] V. I. Bykov, S. B. Tsybenova, M. G. Slinko, “Dinamika protochnogo reaktora nepolnogo peremeshivaniya”, Dokl. RAN, 380:5 (2001), 649–651 | Zbl

[6] V. I. Bykov, S. B. Tsybenova, M. G. Slinko, “Modelirovanie reaktsii na poverkhnosti katalizatora”, Dokl. RAN, 388:6 (2003), 769–773