The parametric analysis of basic macrokinetic models
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 411-416 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Parametric analysis of 2D nonlinear mathematical model steady states is made. The bifurcation curves multiplicity and stability are constructed. Parametric portrait of dynamical system is calculated.
Mots-clés : system “reaction+diffusion”, bifurcation, diffusion.
Keywords: homogenious steady state
@article{JSFU_2010_3_3_a15,
     author = {Svetlana B. Tsybenova},
     title = {The parametric analysis of basic macrokinetic models},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {411--416},
     year = {2010},
     volume = {3},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a15/}
}
TY  - JOUR
AU  - Svetlana B. Tsybenova
TI  - The parametric analysis of basic macrokinetic models
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2010
SP  - 411
EP  - 416
VL  - 3
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a15/
LA  - ru
ID  - JSFU_2010_3_3_a15
ER  - 
%0 Journal Article
%A Svetlana B. Tsybenova
%T The parametric analysis of basic macrokinetic models
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2010
%P 411-416
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a15/
%G ru
%F JSFU_2010_3_3_a15
Svetlana B. Tsybenova. The parametric analysis of basic macrokinetic models. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 411-416. http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a15/

[1] A. I. Volpert, A. N. Ivanova, “Matematicheskie modeli v khimicheskoi kinetike”, Matematicheskoe modelirovanie. Nelineinye differentsialnye uravneniya matematicheskoi fiziki, Nauka, M., 1987, 57–102 | MR

[2] A. N. Ivanova, “Mnogomernye statsionarnye i avtokolebatelnye rezhimy raboty khimicheskikh reaktorov (bifurkatsii korazmernosti dva pri izmenenii razmerov reaktora)”, Matematicheskie metody v khimicheskoi kinetike, ed. V. I. Bykova, Nauka, Novosibirsk, 1990, 96–120

[3] E. S. Kurkina, S. M. Makarova, M. M. Slinko, “Matematicheskoe modelirovanie avtokolebanii skorosti reaktsii okisleniya okisi ugleroda na metallicheskikh katalizatorakh”, Matematicheskoe modelirovanie, 2:1 (1990), 14–26 | Zbl

[4] E. S. Kurkina, A. V. Malykh, “Issledovanie uedinennykh beguschikh voln v odnoi chetyrekhkomponentnoi modeli tipa reaktsiya-diffuziya”, ZhVM i MF, 41:10 (2001), 1597–1609 | MR | Zbl

[5] V. I. Bykov, S. B. Tsybenova, M. G. Slinko, “Dinamika protochnogo reaktora nepolnogo peremeshivaniya”, Dokl. RAN, 380:5 (2001), 649–651 | Zbl

[6] V. I. Bykov, S. B. Tsybenova, M. G. Slinko, “Modelirovanie reaktsii na poverkhnosti katalizatora”, Dokl. RAN, 388:6 (2003), 769–773