The evaluation of convergence radius for series by harmonic polynomials in~$\mathbb R^3$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 407-410.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is obtained the explicit formula for convergence radius of series by homogeneous harmonic polynomials in $\mathbb R^3$.
Keywords: harmonic functions, homogeneous polynomials
Mots-clés : Cauchy–Hadamard formula.
@article{JSFU_2010_3_3_a14,
     author = {Ol'ga V. Khodos},
     title = {The evaluation of convergence radius for series by harmonic polynomials in~$\mathbb R^3$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {407--410},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a14/}
}
TY  - JOUR
AU  - Ol'ga V. Khodos
TI  - The evaluation of convergence radius for series by harmonic polynomials in~$\mathbb R^3$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2010
SP  - 407
EP  - 410
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a14/
LA  - ru
ID  - JSFU_2010_3_3_a14
ER  - 
%0 Journal Article
%A Ol'ga V. Khodos
%T The evaluation of convergence radius for series by harmonic polynomials in~$\mathbb R^3$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2010
%P 407-410
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a14/
%G ru
%F JSFU_2010_3_3_a14
Ol'ga V. Khodos. The evaluation of convergence radius for series by harmonic polynomials in~$\mathbb R^3$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 407-410. http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a14/

[1] B. V. Shabat, Vvedenie v kompleksnyi analiz, v. 2, Nauka, M., 1976 | MR

[2] S. L. Sobolev, Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[3] O. V. Khodos, “Ob analoge formuly Koshi-Adamara dlya garmonicheskikh v share funktsii”, Zhurnal SFU. Seriya matematika i fizika, 2:4 (2009), 517–520

[4] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl