Numerical solving of the liner two-dimensional dynamic problem in liquid-filled porous media
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 2, pp. 256-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the linear two-dimensional dynamic problem in a liquid-filled porous media is numerically solved. As the foundation we use the V. N. Dorovsky linearized model in which the media is described by three elastic parameters. To solve this problem we use a finite-differences scheme of the second order of accuracy. The PML model is also used in this paper. We present several numerical results for a test media which show the efficiency of this model.
Keywords: porous media, finite-difference schem, staggered grid, PML-model.
@article{JSFU_2010_3_2_a11,
     author = {Konstantin E. Sorokin and Kholmatjon Kh. Imomnazarov},
     title = {Numerical solving of the liner two-dimensional dynamic problem in liquid-filled porous media},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {256--261},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_2_a11/}
}
TY  - JOUR
AU  - Konstantin E. Sorokin
AU  - Kholmatjon Kh. Imomnazarov
TI  - Numerical solving of the liner two-dimensional dynamic problem in liquid-filled porous media
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2010
SP  - 256
EP  - 261
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2010_3_2_a11/
LA  - ru
ID  - JSFU_2010_3_2_a11
ER  - 
%0 Journal Article
%A Konstantin E. Sorokin
%A Kholmatjon Kh. Imomnazarov
%T Numerical solving of the liner two-dimensional dynamic problem in liquid-filled porous media
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2010
%P 256-261
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2010_3_2_a11/
%G ru
%F JSFU_2010_3_2_a11
Konstantin E. Sorokin; Kholmatjon Kh. Imomnazarov. Numerical solving of the liner two-dimensional dynamic problem in liquid-filled porous media. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 2, pp. 256-261. http://geodesic.mathdoc.fr/item/JSFU_2010_3_2_a11/

[1] Kh. Kh. Imomnazarov, A. A. Mikhailov, “Ispolzovanie spektralnogo metoda Lagerra dlya resheniya lineinoi dvumernoi dinamicheskoi zadachi dlya poristykh sred”, Sibirskii zhurnal industrialnoi matematiki, 11:3(35) (2008), 86–95 | MR

[2] Ya. I. Frenkel, “K teorii seismicheskikh i seismoelektricheskikh yavlenii vo vlazhnoi pochve”, Izv. AN SSSR. Ser. Geografiya i geofizika, 8:4 (1944), 133–146 | MR

[3] M. A. Biot, “Theory of propagation of elastic waves in fluid-saturated porous solid. I. Low-frequency range”, J. Acoustic. Soc. America, 28 (1956), 168–178 | DOI | MR

[4] V. N. Dorovskii, “Kontinualnaya teoriya filtratsii”, Geologiya i geofizika, 1989, no. 7, 39–45

[5] V. N. Dorovskii, Yu. V. Perepechko, E. I. Romenskii, “Volnovye protsessy v nasyschennykh poristykh uprugodeformiruemykh sredakh”, Fizika goreniya i vzryva, 1993, no. 1, 100–111

[6] A. M. Blokhin, V. N. Dorovsky, Mathematical Modelling in the Theory of Multivelocity Continuum, Nova Science, N.Y., 1995 | MR

[7] Kh. Kh. Imomnazarov, “A mathematical model for the movement of a conducting liquid through a conducting porous medium. I. Excitation of oscillation of the magnetic field by the surface rayleigh wave”, Math. Comput. Modelling, 24:1 (1996), 79–84 | DOI | MR | Zbl

[8] Kh. Kh. Imomnazarov, “Neskolko zamechanii o sisteme uravnenii Bio”, Dokl. RAN, 373:4 (2000), 536–537 | Zbl

[9] Kh. Kh. Imomnazarov, “Some remarks on the Biot system of equations describing wave propagation in a porous medium”, Appl. Math. Lett., 13:3 (2000), 33–35 | DOI | MR | Zbl

[10] Fr. Collino, Ch. Tsogka, Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, Rapport de recherché, No 3471, Aout 1998