Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2010_3_2_a11, author = {Konstantin E. Sorokin and Kholmatjon Kh. Imomnazarov}, title = {Numerical solving of the liner two-dimensional dynamic problem in liquid-filled porous media}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {256--261}, publisher = {mathdoc}, volume = {3}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_2_a11/} }
TY - JOUR AU - Konstantin E. Sorokin AU - Kholmatjon Kh. Imomnazarov TI - Numerical solving of the liner two-dimensional dynamic problem in liquid-filled porous media JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2010 SP - 256 EP - 261 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2010_3_2_a11/ LA - ru ID - JSFU_2010_3_2_a11 ER -
%0 Journal Article %A Konstantin E. Sorokin %A Kholmatjon Kh. Imomnazarov %T Numerical solving of the liner two-dimensional dynamic problem in liquid-filled porous media %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2010 %P 256-261 %V 3 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2010_3_2_a11/ %G ru %F JSFU_2010_3_2_a11
Konstantin E. Sorokin; Kholmatjon Kh. Imomnazarov. Numerical solving of the liner two-dimensional dynamic problem in liquid-filled porous media. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 2, pp. 256-261. http://geodesic.mathdoc.fr/item/JSFU_2010_3_2_a11/
[1] Kh. Kh. Imomnazarov, A. A. Mikhailov, “Ispolzovanie spektralnogo metoda Lagerra dlya resheniya lineinoi dvumernoi dinamicheskoi zadachi dlya poristykh sred”, Sibirskii zhurnal industrialnoi matematiki, 11:3(35) (2008), 86–95 | MR
[2] Ya. I. Frenkel, “K teorii seismicheskikh i seismoelektricheskikh yavlenii vo vlazhnoi pochve”, Izv. AN SSSR. Ser. Geografiya i geofizika, 8:4 (1944), 133–146 | MR
[3] M. A. Biot, “Theory of propagation of elastic waves in fluid-saturated porous solid. I. Low-frequency range”, J. Acoustic. Soc. America, 28 (1956), 168–178 | DOI | MR
[4] V. N. Dorovskii, “Kontinualnaya teoriya filtratsii”, Geologiya i geofizika, 1989, no. 7, 39–45
[5] V. N. Dorovskii, Yu. V. Perepechko, E. I. Romenskii, “Volnovye protsessy v nasyschennykh poristykh uprugodeformiruemykh sredakh”, Fizika goreniya i vzryva, 1993, no. 1, 100–111
[6] A. M. Blokhin, V. N. Dorovsky, Mathematical Modelling in the Theory of Multivelocity Continuum, Nova Science, N.Y., 1995 | MR
[7] Kh. Kh. Imomnazarov, “A mathematical model for the movement of a conducting liquid through a conducting porous medium. I. Excitation of oscillation of the magnetic field by the surface rayleigh wave”, Math. Comput. Modelling, 24:1 (1996), 79–84 | DOI | MR | Zbl
[8] Kh. Kh. Imomnazarov, “Neskolko zamechanii o sisteme uravnenii Bio”, Dokl. RAN, 373:4 (2000), 536–537 | Zbl
[9] Kh. Kh. Imomnazarov, “Some remarks on the Biot system of equations describing wave propagation in a porous medium”, Appl. Math. Lett., 13:3 (2000), 33–35 | DOI | MR | Zbl
[10] Fr. Collino, Ch. Tsogka, Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, Rapport de recherché, No 3471, Aout 1998