On Real Toric Varieties of Dimension Two
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 4, pp. 401-409.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a compact smooth orientable real two-dimensional toric variety is homeomorphic to a torus.
Keywords: real toric varieties, compact surfaces.
@article{JSFU_2009_2_4_a2,
     author = {Oksana V. Znamenskaya and Alexey V. Schuplev},
     title = {On {Real} {Toric} {Varieties} of {Dimension} {Two}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {401--409},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a2/}
}
TY  - JOUR
AU  - Oksana V. Znamenskaya
AU  - Alexey V. Schuplev
TI  - On Real Toric Varieties of Dimension Two
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2009
SP  - 401
EP  - 409
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a2/
LA  - ru
ID  - JSFU_2009_2_4_a2
ER  - 
%0 Journal Article
%A Oksana V. Znamenskaya
%A Alexey V. Schuplev
%T On Real Toric Varieties of Dimension Two
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2009
%P 401-409
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a2/
%G ru
%F JSFU_2009_2_4_a2
Oksana V. Znamenskaya; Alexey V. Schuplev. On Real Toric Varieties of Dimension Two. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 4, pp. 401-409. http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a2/

[1] T. O. Ermolaeva, A. K. Tsikh, “Integrirovanie ratsionalnykh funktsii po $\mathbb R^n$ s pomoschyu toricheskikh kompaktifikatsii i mnogomernykh vychetov”, Matem. sb., 187:9 (1996), 45–64 | MR | Zbl

[2] W. Fulton, Introduction to toric varieties, Princeton Univ. Press, 1993 | MR | Zbl

[3] A. G. Khovanskii, “Mnogogranniki Nyutona (razreshenie osobennostei)”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 22, VINITI, M., 1983, 207–239 | MR | Zbl

[4] D. A. Cox, “The homogeneous coordinate ring of a toric variety”, J. Algebraic Geom., 4 (1995), 17–50 | MR | Zbl