On Estimates of Solutions of the Split Problems for Some Multi-Dimensional Partial Differential Equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 3, pp. 258-270.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider multidimensional second order parabolic equations and the first order partial differential equations. We consider various splittings of the Cauchy problem in the case when the coefficients of the equation depending on time and all space variables and have a special form. The uniform correctness of the split problems, that is, a sufficient condition for the split problems solutions convergence to the solutions to the original problems and the uniform correctness of this problem is proved in classes of smooth functions.
Keywords: differential equation, Cauchy problem, split, stability
Mots-clés : convergence.
@article{JSFU_2009_2_3_a0,
     author = {Yuri Ya. Belov},
     title = {On {Estimates} of {Solutions} of the {Split} {Problems} for {Some} {Multi-Dimensional} {Partial} {Differential} {Equations}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {258--270},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2009_2_3_a0/}
}
TY  - JOUR
AU  - Yuri Ya. Belov
TI  - On Estimates of Solutions of the Split Problems for Some Multi-Dimensional Partial Differential Equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2009
SP  - 258
EP  - 270
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2009_2_3_a0/
LA  - en
ID  - JSFU_2009_2_3_a0
ER  - 
%0 Journal Article
%A Yuri Ya. Belov
%T On Estimates of Solutions of the Split Problems for Some Multi-Dimensional Partial Differential Equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2009
%P 258-270
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2009_2_3_a0/
%G en
%F JSFU_2009_2_3_a0
Yuri Ya. Belov. On Estimates of Solutions of the Split Problems for Some Multi-Dimensional Partial Differential Equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 3, pp. 258-270. http://geodesic.mathdoc.fr/item/JSFU_2009_2_3_a0/

[1] N. N. Yanenko, “On the weak approximation of the differential equations systems”, Sib. Mat. Zh., 5:6 (1964), 1431–1434 (Russian) | MR | Zbl

[2] N. N. Yanenko, G. V. Demidov, “The research of a Cauchy problem by method of weak approximation”, Dokl. Akad. Nauk SSSR, 6 (1966), 1242–1244 (Russian)

[3] N. N. Yanenko, Fractions steps method for solving multi-dimensional problems of mathematical physics, Nauka, Novosibirsk, 1967 (Russian) | Zbl

[4] Yu. Ya. Belov, Inverse Problems for Partial Differential Equations, VSP, Utrecht, 2002 | MR | Zbl

[5] Yu. Ya. Belov, S. V. Polyntseva, “On the problem of identification of two multi-dimensional parabolic equation coefficients”, Dokl. Ross. Akad. Nauk, 396:5 (2004), 583–586 (Russian) | MR | Zbl

[6] Yu. Ya. Belov, I. V. Frolenkov, “Coefficient identification problems for semilinear parabolic equations”, Dokl. Ross. Akad. Nauk, 404:5 (2005), 583–585 (Russian) | MR | Zbl

[7] Yu. Ya. Belov, S. A. Cantor, The weak approximation method, Krasnoyarsk State Univ., Krasnoyarsk, 1999 (Russian)

[8] G. V. Demidov, G. I. Marchuk, “Existence Theorems of the solution to the problem of short-term weather forecast”, Dokl. Akad. Nauk SSSR, 170 (1966), 1006–1008 (Russian) | MR | Zbl

[9] N. A. Kucher, The weak approximation method and the analysis of circuits of splitting in gas dynamics, Dissert. of doctor fis.-math. nauk, Novosibirsk, 1992 (Russian)

[10] E. Kamke, The directory on the differential equations in partial derivatives of the first order, Nauka, Moscow, 1966 (Russian) | Zbl

[11] O. A. Ladyzenskaya, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Nauka, Moscow, 1967 (Russian)

[12] Yu. Ya. Belov, I. V. Frolenkov, “On the two coefficients identification problem for semilinear parabolic equations”, Vestnik of Krasnoyarsk State Univ., 2004, no. 1, 140–149 (Russian)