Metafields and Description of Metabelian Groups without the Involutions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 2, pp. 189-205

Voir la notice de l'article provenant de la source Math-Net.Ru

The term quasifield is introduced for the description of metabelian groups but it also bears an independent meaning. It is proved that any finally generated metabelian group contains a generating set compared to which any element has a uniquely represented record. The elements of a group are multiplied under the formula that is defined by a characteristic numerical set. In addition, the characteristic numerical set defines the group uniquely up to isomorphisms.
Keywords: metabelian group, involution, metafield
Mots-clés : isomorphism.
@article{JSFU_2009_2_2_a6,
     author = {Sergey V. Larin},
     title = {Metafields and {Description} of {Metabelian} {Groups} without the {Involutions}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {189--205},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a6/}
}
TY  - JOUR
AU  - Sergey V. Larin
TI  - Metafields and Description of Metabelian Groups without the Involutions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2009
SP  - 189
EP  - 205
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a6/
LA  - ru
ID  - JSFU_2009_2_2_a6
ER  - 
%0 Journal Article
%A Sergey V. Larin
%T Metafields and Description of Metabelian Groups without the Involutions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2009
%P 189-205
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a6/
%G ru
%F JSFU_2009_2_2_a6
Sergey V. Larin. Metafields and Description of Metabelian Groups without the Involutions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 2, pp. 189-205. http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a6/