Instability of an Equilibrium State of Two Binary Mixtures with the General Interface and One Free Boundary
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 2, pp. 158-166
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stability of an interface of two binary mixtures under any perturbations is investigated. The dependence of the complex decrement on the wave number is deduced by means of a numerical method of orthogonalization. We show that the area of instability increases for not deformable interfaces at increase of the Marangoni number, too. The areas of stability of a system with growth thermal diffusion effects on an interface are determined.
Mots-clés : surface tension, thermal diffusion.
Keywords: Marangoni the number, stability
@article{JSFU_2009_2_2_a3,
     author = {Marina V. Efimova},
     title = {Instability of an {Equilibrium} {State} of {Two} {Binary} {Mixtures} with the {General} {Interface} and {One} {Free} {Boundary}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {158--166},
     year = {2009},
     volume = {2},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a3/}
}
TY  - JOUR
AU  - Marina V. Efimova
TI  - Instability of an Equilibrium State of Two Binary Mixtures with the General Interface and One Free Boundary
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2009
SP  - 158
EP  - 166
VL  - 2
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a3/
LA  - ru
ID  - JSFU_2009_2_2_a3
ER  - 
%0 Journal Article
%A Marina V. Efimova
%T Instability of an Equilibrium State of Two Binary Mixtures with the General Interface and One Free Boundary
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2009
%P 158-166
%V 2
%N 2
%U http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a3/
%G ru
%F JSFU_2009_2_2_a3
Marina V. Efimova. Instability of an Equilibrium State of Two Binary Mixtures with the General Interface and One Free Boundary. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 2, pp. 158-166. http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a3/

[1] L. G. Napolitano, “Plane Marangoni–Poiseulle flow two immiscible fluids”, Acta Astronautica, 7:4–5 (1980), 461–478 | DOI | Zbl

[2] V. V. Pukhnachev, Dvizhenie vyazkoi zhidkosti so svobodnymi granitsami, Uchebn. posobie, NGU, Novosibirsk, 1989 | MR

[3] V. K. Andreev, Linearizovannaya zadacha o malykh vozmuscheniyakh dvizheniya zhidkosti s poverkhnostyu razdela pri nalichii effektov Sore, Sb. tr. sem. “Matematicheskoe modelirovanie v mekhanike”, Dep. VINITI No 1999-B99, 12–33

[4] S. K. Godunov, “O chislennom reshenii kraevykh zadach dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii”, Uspekhi mat. nauk, 16:3 (1961), 171–174 | MR | Zbl