Instability of an Equilibrium State of Two Binary Mixtures with the General Interface and One Free Boundary
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 2, pp. 158-166
The stability of an interface of two binary mixtures under any perturbations is investigated. The dependence of the complex decrement on the wave number is deduced by means of a numerical method of orthogonalization. We show that the area of instability increases for not deformable interfaces at increase of the Marangoni number, too. The areas of stability of a system with growth thermal diffusion effects on an interface are determined.
Mots-clés :
surface tension, thermal diffusion.
Keywords: Marangoni the number, stability
Keywords: Marangoni the number, stability
@article{JSFU_2009_2_2_a3,
author = {Marina V. Efimova},
title = {Instability of an {Equilibrium} {State} of {Two} {Binary} {Mixtures} with the {General} {Interface} and {One} {Free} {Boundary}},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {158--166},
year = {2009},
volume = {2},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a3/}
}
TY - JOUR AU - Marina V. Efimova TI - Instability of an Equilibrium State of Two Binary Mixtures with the General Interface and One Free Boundary JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2009 SP - 158 EP - 166 VL - 2 IS - 2 UR - http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a3/ LA - ru ID - JSFU_2009_2_2_a3 ER -
%0 Journal Article %A Marina V. Efimova %T Instability of an Equilibrium State of Two Binary Mixtures with the General Interface and One Free Boundary %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2009 %P 158-166 %V 2 %N 2 %U http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a3/ %G ru %F JSFU_2009_2_2_a3
Marina V. Efimova. Instability of an Equilibrium State of Two Binary Mixtures with the General Interface and One Free Boundary. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 2, pp. 158-166. http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a3/
[1] L. G. Napolitano, “Plane Marangoni–Poiseulle flow two immiscible fluids”, Acta Astronautica, 7:4–5 (1980), 461–478 | DOI | Zbl
[2] V. V. Pukhnachev, Dvizhenie vyazkoi zhidkosti so svobodnymi granitsami, Uchebn. posobie, NGU, Novosibirsk, 1989 | MR
[3] V. K. Andreev, Linearizovannaya zadacha o malykh vozmuscheniyakh dvizheniya zhidkosti s poverkhnostyu razdela pri nalichii effektov Sore, Sb. tr. sem. “Matematicheskoe modelirovanie v mekhanike”, Dep. VINITI No 1999-B99, 12–33
[4] S. K. Godunov, “O chislennom reshenii kraevykh zadach dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii”, Uspekhi mat. nauk, 16:3 (1961), 171–174 | MR | Zbl